Tau protein is an intrinsically disordered protein. Its physiological state is best described as a conformational ensemble (CE) of metastable structures interconverting on the local and molecular scale. The monoclonal antibody DC39C recognizes a linear C-terminal tau epitope, and as the tau interaction partner, its binding parameters report about tau CE.
View Article and Find Full Text PDFAt present, the conformation-dependent monoclonal antibodies (mAb) provide the only information on folding of tau in the core PHF. Monoclonal antibody MN423 recognizes all and only those Alzheimer's disease (AD) core paired helical filaments (PHFs) subunits, which terminate at Glu391. Using recombinant analogs of the core PHF subunit corresponding to tau residues tau297-391, we found that the C-terminal pentapeptide (387)DHGAE(391) represented only one component of the structure recognized by mAb 423.
View Article and Find Full Text PDFMutations in the tau gene are known to cosegregate with the disease in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). However, the molecular mechanism by which these mutations might lead to the disease is not understood. Here, we show that four of the FTDP-17 tau mutations, R406W, V337M, G272V, and P301L, result in tau proteins that are more favorable substrates for phosphorylation by brain protein kinases than the wild-type, largest four-repeat protein tau4L and tau4L more than tau3L.
View Article and Find Full Text PDFTruncated tau is of great interest because of its important role in neurofibrillary pathogenesis in Alzheimer's disease (AD). A major obstacle for characterization of detailed biochemical and biological properties of truncated tau species and their fragments has been the lack of reliable and quick purification methods. Uneven distribution of acidic and basic residues in tau determines that the N- and C-terminal tau fragments require entirely different purification conditions.
View Article and Find Full Text PDF