Nonlinear interactions are commonly used to access to wavelengths not covered by standard laser systems. In particular, optical parametric amplification (OPA) is a powerful technique to produce broadly tunable light. However, common implementations of OPA suffer from a well-known trade-off, either achieving high efficiency for narrow spectra or inefficient conversion over a broad bandwidth.
View Article and Find Full Text PDFTerahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane.
View Article and Find Full Text PDFWe demonstrate, by generating a THz electric field directly within the guiding structure, an active two-wire waveguide operating in the terahertz (THz) range of wavelengths. We compare the energy throughput of the active configuration with that of a radiatively coupled semi-large photoconductive antenna, in which the radiation is generated outside the waveguide, reporting a 60 times higher energy throughput for the same illumination power and applied voltage. This novel, active waveguide design allows to have efficient coupling of the THz radiation in a dispersion-less waveguide without the need of involved radiative coupling geometries.
View Article and Find Full Text PDFWe propose for the first time an E. coli bacteria sensor based on the evanescent field of the fundamental mode of a suspended-core terahertz fiber. The sensor is capable of E.
View Article and Find Full Text PDFWe outline the most recent technological advancements in the design, fabrication and characterization of polymer microstructured optical fibers (MOFs) for applications in the terahertz waveband. Focusing on specific experimental demonstrations, we show that polymer optical fibers provide a very flexible route towards THz wave guiding. Crucial incentives include the large variety of the low-cost and relatively low absorption loss polymers, the facile fiber preform fabrication by molding, drilling, stacking and extrusion, and finally, the simple fabrication through fiber drawing at low forming temperatures.
View Article and Find Full Text PDFIn this work we report two designs of subwavelength fibers packaged for practical terahertz wave guiding. We describe fabrication, modeling and characterization of microstructured polymer fibers featuring a subwavelength-size core suspended in the middle of a large porous outer cladding. This design allows convenient handling of the subwavelength fibers without distorting their modal profile.
View Article and Find Full Text PDFWe report fabrication method and THz characterization of composite films containing either aligned metallic (tin alloy) microwires or chalcogenide As2Se3 microwires. The microwire arrays are made by stack-and-draw fiber fabrication technique using multi-step co-drawing of low-melting-temperature metals or semiconductor glasses together with polymers. Fibers are then stacked together and pressed into composite films.
View Article and Find Full Text PDFWe report two novel fabrication techniques, as well as THz spectral transmission and propagation loss measurements of subwavelength plastic wires with highly porous (up to 86%) and non-porous transverse geometries. The two fabrication techniques we describe are based on the microstructured molding approach. In one technique the mold is made completely from silica by stacking and fusing silica capillaries to the bottom of a silica ampoule.
View Article and Find Full Text PDF