Allotopic expression is the term given for the deliberate relocation of gene function from an organellar genome to the nuclear genome. We hypothesized that the allotopic expression of an essential mitochondrial gene using a promoter that expressed efficiently in all cell types except those responsible for male reproduction would yield a cytoplasmic male sterility (CMS) phenotype once the endogenous mitochondrial gene was inactivated via genome editing. To test this, we repurposed the mitochondrially encoded gene of tobacco to function in the nucleus under the transcriptional control of a CaMV 35S promoter (construct 35S:nATP1), a promoter that has been shown to be minimally expressed in early stages of anther development.
View Article and Find Full Text PDFFor plants, distinguishing between mutualistic and pathogenic microbes is a matter of survival. All microbes contain microbe-associated molecular patterns (MAMPs) that are perceived by plant pattern recognition receptors (PRRs). Lysin motif receptor-like kinases (LysM-RLKs) are PRRs attuned for binding and triggering a response to specific MAMPs, including chitin oligomers (COs) in fungi, lipo-chitooligosaccharides (LCOs), which are produced by mycorrhizal fungi and nitrogen-fixing rhizobial bacteria, and peptidoglycan in bacteria.
View Article and Find Full Text PDFPlant endo-β-1,4-glucanases belonging to the Glycoside Hydrolase Family 9 have functional roles in cell wall biosynthesis and remodeling via endohydrolysis of (1→4)-β-d-glucosidic linkages. Modification of cell wall chemistry via RNA interference (RNAi)-mediated downregulation of Populus deltoides KORRIGAN (PdKOR), an endo-β-1,4-glucanase familygene was shown to have functional consequences on the composition of secondary metabolome and the ability of modified roots to interact with beneficial microbes. The molecular remodeling that underlies the observed differences at metabolic, physiological, and morphological levels in roots is not well understood.
View Article and Find Full Text PDFExposure of plants to abiotic stresses, whether individually or in combination, triggers dynamic changes to gene regulation. These responses induce distinct changes in phenotypic characteristics, enabling the plant to adapt to changing environments. For example, iron deficiency and heat stress have been shown to alter root development by reducing primary root growth and reducing cell proliferation, respectively.
View Article and Find Full Text PDFBRUTUS (BTS) is an iron binding E3 ligase that has been shown to bind to and influence the accumulation of target basic helix-loop-helix transcription factors through 26S proteasome-mediated degradation in Arabidopsis thaliana. Vascular Plant One-Zinc finger 1 (VOZ1) and Vascular plant One-Zinc finger 2 (VOZ2) are NAM, ATAF1/2 and CUC2 (NAC) domain transcription factors that negatively regulate drought and cold stress responses in plants and have previously been shown to be degraded via the 26S proteasome. However, the mechanism that initializes this degradation is unknown.
View Article and Find Full Text PDFBRUTUS (BTS) is a hemerythrin (HHE) domain containing E3 ligase that facilitates the degradation of POPEYE-like (PYEL) proteins in a proteasomal-dependent manner. Deletion of BTS HHE domains enhances BTS stability in the presence of iron and also complements loss of BTS function, suggesting that the HHE domains are critical for protein stability but not for enzymatic function. The RING E3 domain plays an essential role in BTS' capacity to both interact with PYEL proteins and to act as an E3 ligase.
View Article and Find Full Text PDFTime course transcriptome datasets are commonly used to predict key gene regulators associated with stress responses and to explore gene functionality. Techniques developed to extract causal relationships between genes from high throughput time course expression data are limited by low signal levels coupled with noise and sparseness in time points. We deal with these limitations by proposing the Cluster and Differential Alignment Algorithm (CDAA).
View Article and Find Full Text PDFIron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation.
View Article and Find Full Text PDFSymbiotic nitrogen fixation is one of the most promising and immediate alternatives to the overuse of polluting nitrogen fertilizers for improving plant nutrition. At the core of this process are a number of metalloproteins that catalyze and provide energy for the conversion of atmospheric nitrogen to ammonia, eliminate free radicals produced by this process, and create the microaerobic conditions required by these reactions. In legumes, metal cofactors are provided to endosymbiotic rhizobia within root nodule cortical cells.
View Article and Find Full Text PDF