Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).
View Article and Find Full Text PDFThe AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours.
View Article and Find Full Text PDFGenetic diversity is fundamental for studying the complex architecture of the traits of agronomic importance, controlled by major and minor loci. Moreover, well-characterized germplasm collections are essential tools for dissecting and analyzing genetic and phenotypic diversity in crops. A panel of 360 entries, a subset of a larger collection maintained within the GenBank at CREA Bergamo, which includes the inbreds derived from traditional Italian maize open-pollinated (OP) varieties and advanced breeding ones (Elite Inbreds), was analyzed to identify SNP markers using the tGBS genotyping-by-sequencing technology.
View Article and Find Full Text PDFRusts of the genus are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by f. sp.
View Article and Find Full Text PDFWheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide.
View Article and Find Full Text PDFThis Special Issue comprises a collection of eight peer-reviewed articles centered around the plant-pathogen interaction with the aim of proposing strategies that enhance plant resistance to pathogens and limit the damage to crop production, utilizing a multidisciplinary approach [...
View Article and Find Full Text PDFThe biotechnological approaches of transgenesis and the more recent eco-friendly new breeding techniques (NBTs), in particular, genome editing, offer useful strategies for genetic improvement of crops, and therefore, recently, they have been receiving increasingly more attention. The number of traits improved through transgenesis and genome editing technologies is growing, ranging from resistance to herbicides and insects to traits capable of coping with human population growth and climate change, such as nutritional quality or resistance to climatic stress and diseases. Research on both technologies has reached an advanced stage of development and, for many biotech crops, phenotypic evaluations in the open field are already underway.
View Article and Find Full Text PDFThe AurkA kinase is a well-known mitotic regulator, frequently overexpressed in tumors. The microtubule-binding protein TPX2 controls AurkA activity, localization, and stability in mitosis. Non-mitotic roles of AurkA are emerging, and increased nuclear localization in interphase has been correlated with AurkA oncogenic potential.
View Article and Find Full Text PDFStem rinfectionust, caused by the fungus f. sp. (), is one of the most devastating fungal diseases of durum and common wheat worldwide.
View Article and Find Full Text PDFSpecialized plant metabolites (SPMs), traditionally referred to as 'secondary metabolites', are chemical compounds involved in a broad range of biological functions, including plant responses to abiotic and biotic stresses. Moreover, some of them have a role in end-product quality with potential health benefits in humans. For this reason, they became an important target of studies focusing on their mechanisms of action and use in crop breeding and management.
View Article and Find Full Text PDFThe renewed focus on cereal landraces is a response to some negative consequences of modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions, constituting an important source of genetic diversity usable in modern plant breeding to improve the adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments. Traditional agricultural production systems have played an important role in the evolution and conservation of wide variability in gene pools within species.
View Article and Find Full Text PDFDefatted seed meals of oleaginous Brassicaceae, such as , and potato peel are excellent plant matrices to recover potentially useful biomolecules from industrial processes in a circular strategy perspective aiming at crop protection. These biomolecules, mainly glycoalkaloids and phenols for potato and glucosinolates for Brassicaceae, have been proven to be effective against microbes, fungi, nematodes, insects, and even parasitic plants. Their role in plant protection is overviewed, together with the molecular basis of their synthesis in plant, and the description of their mechanisms of action.
View Article and Find Full Text PDFDurum wheat (tetraploid) and bread wheat (hexaploid) are two closely related species with potentially different adaptation capacities and only a few distinct technological properties that make durum semolina and wheat flour more suitable for pasta, or bread and bakery products, respectively. Interspecific crosses and new breeding technologies now allow researchers to develop wheat lines with durum or bread quality features in either a tetraploid or hexaploid genetic background; such lines combine any technological properties of wheat with the different adaptation capacity expressed by tetraploid and hexaploid wheat genomes. Here, we discuss what makes bread and durum wheat different, consider their environmental adaptation capacity and the major quality-related genes that explain the different end-uses of semolina and bread flour and that could be targets for future wheat breeding programs.
View Article and Find Full Text PDFThe domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo.
View Article and Find Full Text PDFStem rust, caused by f. sp. (), is a major biotic constraint to wheat production worldwide.
View Article and Find Full Text PDFIn this work we investigated the variability and the genetic basis of susceptibility to arbuscular mycorrhizal (AM) colonization of wheat roots. The mycorrhizal status of wild, domesticated and cultivated tetraploid wheat accessions, inoculated with the AM species Funneliformis mosseae, was evaluated. In addition, to detect genetic markers in linkage with chromosome regions involved in AM root colonization, a genome wide association analysis was carried out on 108 durum wheat varieties and two AM fungal species (F.
View Article and Find Full Text PDFNLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels.
View Article and Find Full Text PDFPhenology has a profound effect on adaptation and productivity of crops. The impact of phenology on tillering and fertility traits of durum wheat ( L. subsp.
View Article and Find Full Text PDFIncreasing grain yield potential in wheat has been a major target of most breeding programs. Genetic advance has been frequently hindered by negative correlations among yield components that have been often observed in segregant populations and germplasm collections. A tetraploid wheat collection was evaluated in seven environments and genotyped with a 90K SNP assay to identify major and stable quantitative trait loci (QTL) for grain yield per spike (GYS), kernel number per spike (KNS) and thousand-kernel weight (TKW), and to analyse the genetic relationships between the yield components at QTL level.
View Article and Find Full Text PDFA segregating population of 136 recombinant inbred lines derived from a cross between the durum wheat cv. "Simeto" and the accession "Molise Colli" was grown in soil and evaluated for a number of shoot and root morphological traits. A total of 17 quantitative trait loci (QTL) were identified for shoot dry weight, number of culms, and plant height and for root dry weight, volume, length, surface area, and number of forks and tips, on chromosomes 1B, 2A, 3A, 4B, 5B, 6A, 6B, and 7B.
View Article and Find Full Text PDF