Background: Both albuminuria and depression are associated with cardiovascular disease, reflecting low-grade systemic inflammation and endothelial dysfunction. They share risk factors including weight, blood pressure, smoking and blood glucose levels. This longitudinal study aimed to examine bidirectional associations between depression symptoms, indexed by the Hospital Anxiety and Depression scale (HADS), and the inflammation marker albuminuria.
View Article and Find Full Text PDFIn this paper, we demonstrate how simulation studies can be used to answer questions about identifiability and consequences of omitting effects from a model. The methodology is presented through a case study where identifiability of genetic and/or individual (environmental) maternal effects is explored. Our study system is a wild house sparrow () population with known pedigree.
View Article and Find Full Text PDFKey Message: A novel reparametrization-based INLA approach as a fast alternative to MCMC for the Bayesian estimation of genetic parameters in multivariate animal model is presented.
Abstract: Multi-trait genetic parameter estimation is a relevant topic in animal and plant breeding programs because multi-trait analysis can take into account the genetic correlation between different traits and that significantly improves the accuracy of the genetic parameter estimates. Generally, multi-trait analysis is computationally demanding and requires initial estimates of genetic and residual correlations among the traits, while those are difficult to obtain.
Animal models are generalized linear mixed models used in evolutionary biology and animal breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a methodology for making fast, nonsampling-based Bayesian inference for hierarchical Gaussian Markov models. In this article, we demonstrate that the INLA methodology can be used for many versions of Bayesian animal models.
View Article and Find Full Text PDFPopulation genetic structure and intrapopulation levels of genetic variation have important implications for population dynamics and evolutionary processes. Habitat fragmentation is one of the major threats to biodiversity. It leads to smaller population sizes and reduced gene flow between populations and will thus also affect genetic structure.
View Article and Find Full Text PDF