Type 2 diabetes (T2D) is associated with increased oxidative stress as indicated by elevated levels of lipid peroxidation and protein oxidation products. Since reactive oxygen species (ROS) can cause damage to biological macromolecules including DNA, this study investigated oxidative damage to DNA using the alkaline (pH > 13) comet assay in peripheral whole blood leukocytes sampled from 15 dyslipidemic T2D patients treated with simvastatin (20 mg/day), 15 dyslipidemic T2D patients not treated with simvastatin, 20 non-dyslipidemic T2D patients, and 20 healthy individuals (controls). Our results showed a greater DNA migration in terms of damage index (DI) (p < 0.
View Article and Find Full Text PDFBackground And Aims: Oxidative stress is considered an important factor in the development of diabetic complications that causes a variety of changes such as oxidative modification of membrane lipids, nucleic acids and cellular proteins. Dyslipidemia is frequently associated with diabetes and cardiovascular disease. In this context, the objective of this study was to evaluate oxidative modifications of plasma proteins and lipids in non dyslipidemic type 2 diabetic (T2D) patients, in dyslipidemic T2D patients treated or not with simvastatin and in healthy subjects to investigate whether treatment with low doses of simvastatin plays a protective role on the lipid and protein oxidative damage in these patients.
View Article and Find Full Text PDF