Publications by authors named "Anna Maria Pappa"

Traditional epidermal electrodes, typically made of silver/silver chloride (Ag/AgCl), have been widely used in various applications, including electrophysiological recordings and biosignal monitoring. However, they present limitations due to inherent material mismatches with the skin. This often results in high interface impedance, discomfort, and potential skin irritation, particularly during prolonged use or for individuals with sensitive skin.

View Article and Find Full Text PDF

Drug studies targeting neuronal ion channels are crucial to understand neuronal function and develop therapies for neurological diseases. The traditional method to study neuronal ion-channel activities heavily relies on the whole-cell patch clamp as the industry standard. However, this technique is both technically challenging and labour-intensive, while involving the complexity of keeping cells alive with low throughput.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in consumer electronics, microfluidics, and nanotechnology have enabled the creation of affordable wearable smart devices that can track digital biomarkers, though traditional biomarker tracking still largely relies on laboratory tests.
  • While real-time sensing of physiological and behavioral data from patients has the potential to enhance diagnosis and treatment using AI, current methods often require trained personnel and specialized equipment, especially in developing countries.
  • This review examines the integration of traditional and digital biomarkers through portable devices and highlights the role of AI in improving point-of-care diagnostics, outlining both the challenges and future prospects for this technology.
View Article and Find Full Text PDF
Article Synopsis
  • Tumor-derived extracellular vesicles (TEVs) promote invasive cancer traits by inducing epithelial-to-mesenchymal transition (EMT) in healthy cells, highlighting a new area for cancer treatment.
  • A new screening platform using organic electrochemical transistors (OECTs) enables real-time monitoring of TEV effects and the testing of drugs that can inhibit metastasis.
  • The study identifies heparin as an effective blocker of TEV-induced EMT, demonstrating the platform's potential for drug discovery aimed at reducing cancer spread.
View Article and Find Full Text PDF

Plasma membrane mimetics can potentially play a vital role in drug discovery and immunotherapy owing to the versatility to assemble facilely cellular membranes on surfaces and/or nanoparticles, allowing for direct assessment of drug/membrane interactions. Recently, bacterial membranes (BMs) have found widespread applications in biomedical research as antibiotic resistance is on the rise, and bacteria-associated infections have become one of the major causes of death worldwide. Over the last decade, BM research has greatly benefited from parallel advancements in nanotechnology and bioelectronics, resulting in multifaceted systems for a variety of sensing and drug discovery applications.

View Article and Find Full Text PDF

Electroactive and functional materials can be integrated with plants to monitor and control their development or to harvest and store energy. Seminal work by Stavrinidou et al. demonstrated electrically conducting polymers that grow inside living plants and form circuitry, unleashing exciting applications in smart agriculture and modern urban ecosystems.

View Article and Find Full Text PDF

The rise of antibiotic resistance is a growing worldwide human health issue, with major socioeconomic implications. An understanding of the interactions occurring at the bacterial membrane is crucial for the generation of new antibiotics. Supported lipid bilayers (SLBs) made from reconstituted lipid vesicles have been used to mimic these membranes, but their utility has been restricted by the simplistic nature of these systems.

View Article and Find Full Text PDF
Article Synopsis
  • * The research focuses on creating GM1-rich SLBs on conducting polymer electrodes to measure changes in electrical properties when interacting with cholera toxin.
  • * The findings demonstrate the effectiveness of this platform for detecting toxins in complex samples, understanding ganglioside interactions, and finding molecules that could inhibit these interactions.
View Article and Find Full Text PDF

Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to systems. The advent of microfluidics and the considerable advances in reliability and complexity of models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing.

View Article and Find Full Text PDF

Cancer-derived exosomes (cEXOs) facilitate transfer of information between tumor and human primary stromal cells, favoring cancer progression. Although the mechanisms used during this information exchange are still not completely understood, it is known that binding is the initial contact established between cEXOs and cells. Hence, studying binding and finding strategies to block it are of great therapeutic value.

View Article and Find Full Text PDF

Emerging viruses will continue to be a threat to human health and wellbeing into the foreseeable future. The COVID-19 pandemic revealed the necessity for rapid viral sensing and inhibitor screening in mitigating viral spread and impact. Here, we present a platform that uses a label-free electronic readout as well as a dual capability of optical (fluorescence) readout to sense the ability of a virus to bind and fuse with a host cell membrane, thereby sensing viral entry.

View Article and Find Full Text PDF

Transmembrane proteins represent a major target for modulating cell activity, both in terms of therapeutics drugs and for pathogen interactions. Work on screening such therapeutics or identifying toxins has been severely limited by the lack of available methods that would give high content information on functionality (ideally multimodal) and that are suitable for high-throughput. Here, we have demonstrated a platform that is capable of multimodal (optical and electronic) screening of ligand gated ion-channel activity in human-derived membranes.

View Article and Find Full Text PDF

Transmembrane proteins (TMPs) regulate processes occurring at the cell surface and are essential gatekeepers of information flow across the membrane. TMPs are difficult to study, given the complex environment of the membrane and its influence on protein conformation, mobility, biomolecule interaction, and activity. For the first time, we create mammalian biomembranes supported on a transparent, electrically conducting polymer surface, which enables dual electrical and optical monitoring of TMP function in its native membrane environment.

View Article and Find Full Text PDF

We present a simple, rapid method for forming supported lipid bilayers on organic electronic devices composed of conducting polymer electrodes using a solvent-assisted lipid bilayer formation method. These supported bilayers present protein recognition elements that are mobile, critical for multivalent binding interactions. Because these polymers are transparent and conducting, we demonstrate, by optical and electrical detection, the specific interactions of proteins with these biomembrane-based bioelectronic devices.

View Article and Find Full Text PDF

Membrane biosensors that can rapidly sense pathogen interaction and disrupting agents are needed to identify and screen new drugs to combat antibiotic resistance. Bioelectronic devices have the capability to read out both ionic and electrical signals, but their compatibility with biological membranes is somewhat limited. Supported lipid bilayers (SLBs) have served as useful biomimetics for a myriad of research topics involving biological membranes.

View Article and Find Full Text PDF

A large amount of research within organic biosensors is dominated by organic electrochemical transistors (OECTs) that use conducting polymers such as poly(3,4-ethylene dioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS). Despite the recent advances in OECT-based biosensors, the sensing is solely reliant on the amperometric detection of the bioanalytes. This is typically accompanied by large undesirable parasitic electrical signals from the electroactive components in the electrolyte.

View Article and Find Full Text PDF

The persistence of intractable neurological disorders necessitates novel therapeutic solutions. We demonstrate the utility of direct in situ electrophoretic drug delivery to treat neurological disorders. We present a neural probe incorporating a microfluidic ion pump (μFIP) for on-demand drug delivery and electrodes for recording local neural activity.

View Article and Find Full Text PDF

Antibiotic discovery has experienced a severe slowdown in terms of discovery of new candidates. In vitro screening methods using phospholipids to model the bacterial membrane provide a route to identify molecules that specifically disrupt bacterial membranes causing cell death. Thanks to the electrically insulating properties of the major component of the cell membrane, phospholipids, electronic devices are highly suitable transducers of membrane disruption.

View Article and Find Full Text PDF
Article Synopsis
  • Enzymes are highly specific and reversible, making them ideal for use as biorecognition elements in biosensors to detect various metabolites, including lactate, which is important in health contexts.
  • The study presents a novel all-polymer micrometer-scale transistor platform that enhances enzyme-electrode interaction, allowing for faster, more sensitive detection without the need for complex mediators.
  • This new device improves upon traditional amperometric sensors by amplifying signals and simplifying the design, paving the way for advancements in both biosensing and enzyme-based energy technologies.
View Article and Find Full Text PDF

In this review we focus on demonstrating how organic electronic materials can solve key problems in biosensing thanks to their unique material properties and implementation in innovative device configurations. We highlight specific examples where these materials solve multiple issues related to complex sensing environments, and we benchmark these examples by comparing them to state-of-the-art commercially available sensing using alternative technologies. We have categorized our examples by sample type, focusing on sensing from body fluids in vitro and on wearable sensors, which have attracted significant interest owing to their integration with everyday life activities.

View Article and Find Full Text PDF

Future drug discovery and toxicology testing could benefit significantly from more predictive and multi-parametric readouts from models. Despite the recent advances in the field of microfluidics, and more recently organ-on-a-chip technology, there is still a high demand for real-time monitoring systems that can be readily embedded with microfluidics. In addition, multi-parametric monitoring is essential to improve the predictive quality of the data used to inform clinical studies that follow.

View Article and Find Full Text PDF

Implantable devices offer an alternative to systemic delivery of drugs for the treatment of neurological disorders. A microfluidic ion pump (µFIP), capable of delivering a drug without the solvent through electrophoresis, is developed. The device is characterized in vitro by delivering γ-amino butyric acid to a target solution, and demonstrates low-voltage operation, high drug-delivery capacity, and high ON/OFF ratio.

View Article and Find Full Text PDF

Oppositely charged polyelectrolyte multilayers (PEMs) were built up in a layer-by-layer (LbL) assembly on top of the conducting polymer channel of an organic electrochemical transistor (OECT), aiming to combine the advantages of well-established PEMs with a high performance electronic transducer. The multilayered film is a model system to investigate the impact of biofunctionalization on the operation of OECTs comprising a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) film as the electrically active layer. Understanding the mechanism of ion injection into the channel that is in direct contact with charged polymer films provides useful insights for novel biosensing applications such as nucleic acid sensing.

View Article and Find Full Text PDF