The development of new drugs derived from plant sources is of significant interest in modern pharmacy. One of the promising plant sources for introduction into pharmaceuticals is (L.) Sch.
View Article and Find Full Text PDFPolymers (Basel)
October 2023
N-butyl-N-methyl-1-phenylpyrrole[1,2-a] pyrazine-3-carboxamide (GML-3) is a potential candidate for combination drug therapy due to its anxiolytic and antidepressant activity. The anxiolytic activity of GML-3 is comparable to diazepam. The antidepressant activity of GML-3 is comparable to amitriptyline.
View Article and Find Full Text PDFThis work aimed to develop and characterize a water-soluble, high-release active pharmaceutical ingredient (API) composite based on the practically water-insoluble API N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide (GML-3), a substance with antidepressant and anxiolytic action. This allows to ensure the bioavailability of the medicinal product of combined action. Composites obtained by the method of creating amorphous solid dispersions, where polyvinylpyrrolidone (PVP) or Soluplus was used as a polymer, were studied for crystallinity, stability and the release of API from the composite into purified water.
View Article and Find Full Text PDFThe combination of targeted transport and improvement of the release profile of the active pharmaceutical ingredient (API) is a current trend in the development of oral medicinal products (MP). A well-known way to implement this concept is to obtain floating gastroretentive delivery systems that provide a long stay of the dosage form (DF) on the surface of the stomach contents. The nomenclature of excipients (Es) of a polymeric nature used in the technology of obtaining floating drug delivery systems (FDDS) is discussed.
View Article and Find Full Text PDFTechnologies for obtaining dosage formulations (DF) for personalized therapy are currently being developed in the field of inkjet (2D) and 3D printing, which allows for the creation of DF using various methods, depending on the properties of pharmaceutical substances and the desired therapeutic effect. By combining these types of printing with smart polymers and special technological approaches, so-called 4D printed dosage formulations are obtained. This article discusses the main technological aspects and used excipients of a polymeric nature for obtaining 2D, 3D, 4D printed dosage formulations.
View Article and Find Full Text PDF