Publications by authors named "Anna Majczak"

Detailed mechanisms of the switch of the cell death mode from apoptosis to necrosis remain to be solved, although the intracellular level of ATP and that of free radicals have been postulated to be the major factors involved in the mechanisms. In the present study menadione (MEN)-induced cell injury processes were studied using rho0 cells derived from human osteosarcoma 143B cells and parental rho+ cells co-treated with inhibitors of electron transfer chain of mitochondria or oligomycin, an inhibitor of ATP synthesis. Treatment of rho+ cells with 100 microM MEN induced apoptosis, which reached the maximum at 6 h, and was followed by an abrupt decrease thereafter, while necrotic cells (NC) increased continuously when they were judged by Annexin V and PI double staining.

View Article and Find Full Text PDF

Characterization of free radical-induced cell injury processes of placenta cells is of vital importance for clinical medicine for the maintenance of intrauterine fetal life. The present study has analyzed cell injury processes in cells of the choriocarcinoma cell line JAR treated with menadione, an anticancer drug, and H(2)O(2) in comparison to osteosarcoma 143B cells using electron microscopic and flow cytometric techniques. Flow cytometry on JAR cells exposed to 100 muM menadione and double-stained with Annexin V and propidium iodide (PI) detected apoptotic cells reaching the maximum after 4 h of incubation with a rapid decrease thereafter.

View Article and Find Full Text PDF

The effects of inhibitors of plasma membrane NADPH oxidase on menadione-induced cell injury processes were studied using human osteosarcoma 143B cells. The intracellular level of superoxide in the cells treated with menadione for 6 h reached a maximum followed by an abrupt decrease. The population of apoptotic cells detected by Annexin V and propidium iodide double staining also reached its maximum at 6 h of menadione-treatment while that of necrotic cells increased continuously reaching 90% of the total population at 9 h of the treatment.

View Article and Find Full Text PDF

Treatment of 143B cells with microtubule-active drugs (MADs) including taxol, nocodazole and colchicine induced distinct structural changes, such as rounding of the cells with perinuclear clustering of mitochondria, when the cells were treated for up to 10 h. When the incubation time with MADs was longer than 10 h, multinuclear cells appeared, and their population increased with time. In this study perinuclear clustering of mitochondria i.

View Article and Find Full Text PDF

Effects of jasplakinolide (JSP), a stabilizer of F-actin, and latrunculin A (LTA), a destabilizer of F-actin, on a series of events occurring in the execution phase of staurosporine (STS)-induced apoptotic processes were studied using human osteosarcoma 143B cells. Time-dependent apparent increases of the population of cells with collapsed membrane potential of mitochondria (Delta Psi(m)) caused by STS treatment were not due to actual decreases in the Delta Psi(m) per cell, but due to the fragmentation of cells resulting in decreases in the number of active mitochondria per cell. Decreases in the Delta Psi(m) in fragmented cells occurred late in the execution phase.

View Article and Find Full Text PDF

Time-dependent changes in the cell death mode from apoptosis to necrosis were studied in cultured 143B cells treated with menadione, an anti-cancerous drug, excluding a possible involvement of "secondary necrosis." The population of apoptotic cells judged by FITC-Annexin V and propidium iodide (PI) double staining reached its maximum at 6 hours after 100 microM menadione treatment followed by an abrupt decrease thereafter, while that of necrotic cells continuously increased reaching 90% at 24 hours. Electron microscopically, cells attached to the culture dish at 6 hours after the treatment consisted of two different types of cells: cells with typical apoptotic features occupying the major population and those with condensed nuclei and swollen cytoplasm.

View Article and Find Full Text PDF