We consider three different systems in a heat flow: an ideal gas, a van der Waals gas, and a binary mixture of ideal gases. We divide each system internally into two subsystems by a movable wall. We show that the direction of the motion of the wall, after release, under constant boundary conditions, is determined by the same inequality as in equilibrium thermodynamics dU-đQ≤0.
View Article and Find Full Text PDFIn this paper, we formulate the first law of global thermodynamics for stationary states of the binary ideal gas mixture subjected to heat flow. We map the non-uniform system onto the uniform one and show that the internal energy U(S*,V,N1,N2,f1*,f2*) is the function of the following parameters of state: a non-equilibrium entropy S*, volume , number of particles of the first component, N1, number of particles of the second component N2 and the renormalized degrees of freedom. The parameters f1*,f2*, N1,N2 satisfy the relation (N1/(N1+N2))f1*/f1+(N2/(N1+N2))f2*/f2=1 (f1 and f2 are the degrees of freedom for each component respectively).
View Article and Find Full Text PDFWe formulate the first law of global thermodynamics for stationary states of the ideal gas in the gravitational field subjected to heat flow. We map the non-uniform system (described by profiles of the density and temperature) onto the uniform one and show that the total internal energy U(S*,V,N,L,M*) is the function of the following parameters of state: the non-equilibrium entropy S*, volume , number of particles, , height of the column along the gravitational force, and renormalized mass of a particle M*. Each parameter corresponds to a different way of energy exchange with the environment.
View Article and Find Full Text PDFEquilibrium thermodynamics describes the energy exchange of a body with its environment. Here, we describe the global energy exchange of an ideal gas in the Coutte flow in a thermodynamic-like manner. We derive a fundamental relation between internal energy as a function of parameters of state.
View Article and Find Full Text PDFEntropy (Basel)
September 2023
There is a long-standing question of whether it is possible to extend the formalism of equilibrium thermodynamics to the case of nonequilibrium systems in steady-states. We have made such an extension for an ideal gas in a heat flow. Here, we investigated whether such a description exists for the system with interactions: the van der Waals gas in a heat flow.
View Article and Find Full Text PDFWe study a model of a lipid bilayer membrane described by two order parameters: the chemical composition described using the Gaussian model and the spatial configuration described with the elastic deformation model of a membrane with a finite thickness or, equivalently, for an adherent membrane. We assume and explain on physical grounds the linear coupling between the two order parameters. Using the exact solution, we calculate the correlation functions and order parameter profiles.
View Article and Find Full Text PDFThere is a long-standing question as to whether and to what extent it is possible to describe nonequilibrium systems in stationary states in terms of global thermodynamic functions. The positive answers have been obtained only for isothermal systems or systems with small temperature differences. We formulate thermodynamics of the stationary states of the ideal gas subjected to heat flow in the form of the zeroth, first, and second law.
View Article and Find Full Text PDFWe investigate the thermal relaxation of an ideal gas from a nonequilibrium stationary state. The gas is enclosed between two walls, which initially have different temperatures. After making one of the walls adiabatic, the system returns to equilibrium.
View Article and Find Full Text PDFWe study the relaxation dynamics of a binary liquid mixture near a light-absorbing Janus particle after switching on and off illumination using experiments and theoretical models. The dynamics is controlled by the temperature gradient formed around the heated particle. Our results show that the relaxation is asymmetric: The approach to a nonequilibrium steady state is much slower than the return to thermal equilibrium.
View Article and Find Full Text PDFWe analyze a compressible Poiseuille flow of ideal gas in a plane channel. We provide the form of internal energy U for a nonequilibrium stationary state that includes viscous dissipation and pressure work. We demonstrate that U depends strongly on the ratio Δp/p_{0}, where Δp is the pressure difference between inlet and outlet and p_{0} is the outlet's pressure.
View Article and Find Full Text PDFWe discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the gas. At critical heat flux we have found a continuous transition to the state with a low-density, hot gas on one side of the movable wall and a dense, cold gas on the other side.
View Article and Find Full Text PDFWe study a quantity T defined as the energy U, stored in non-equilibrium steady states (NESS) over its value in equilibrium U 0 , Δ U = U - U 0 divided by the heat flow J U going out of the system. A recent study suggests that T is minimized in steady states (Phys.Rev.
View Article and Find Full Text PDFCorrection for 'Transient coarsening and the motility of optically heated Janus colloids in a binary liquid mixture' by Juan Ruben Gomez-Solano et al., Soft Matter, 2020, DOI: 10.1039/d0sm00964d.
View Article and Find Full Text PDFA gold-capped Janus particle suspended in a near-critical binary liquid mixture can self-propel under illumination. We have immobilized such a particle in a narrow channel and carried out a combined experimental and theoretical study of the non-equilibrium dynamics of a binary solvent around it - lasting from the very moment of switching illumination on until the steady state is reached. In the theoretical study we use both a purely diffusive and a hydrodynamic model, which we solve numerically.
View Article and Find Full Text PDFUsing a fluid particle dynamics method we numerically investigate the motion of a spherical Janus particle suspended in a binary liquid mixture, which emerges under heating of one-half of a colloid surface. The method treats simultaneously the flow of the solvent and the motion of the particle, hence, the velocity of the particle can be computed directly. Our approach accounts for a phenomenon of critical adsorption, therefore, a particle that is adsorptionwise nonneutral is always completely covered by an adsorption layer (droplet).
View Article and Find Full Text PDFSystems kept out of equilibrium in stationary states by an external source of energy store an energy ΔU=U-U_{0}. U_{0} is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine ΔU for two model systems: ideal gas and a Lennard-Jones fluid.
View Article and Find Full Text PDFWe study the non-equilibrium coarsening dynamics of a binary liquid solvent around a colloidal particle in the presence of a time-dependent temperature gradient that emerges after a temperature quench of a suitable coated colloid surface. The solvent is maintained at its critical concentration and the colloid is fixed in space. The coarsening patterns near the surface are shown to be strongly dependent on the colloid surface adsorption properties and on the temperature evolution.
View Article and Find Full Text PDFUsing mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time.
View Article and Find Full Text PDF2,6-lutidine molecules mix with water at high and low temperatures but in a wide intermediate temperature range a 2,6-lutidine/water mixture exhibits a miscibility gap. We constructed and validated an atomistic model for 2,6-lutidine and performed molecular dynamics simulations of 2,6-lutidine/water mixture at different temperatures. We determined the part of demixing curve with the lower critical point.
View Article and Find Full Text PDFWe show that hydrophilic ions present in a confined, near-critical aqueous mixture can lead to an attraction between like charge surfaces with opposing preferential adsorption of the two species of the mixture, even though the corresponding Casimir potential in uncharged systems is repulsive. This prediction agrees with a recent experiment [Nellen et al., Soft Matter, 2011, 7, 5360].
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2013
We study a planar two-temperature diffusion of a Brownian particle in a parabolic potential. The diffusion process is defined in terms of two Langevin equations with two different effective temperatures in the X and the Y directions. In the stationary regime the system is described by a nontrivial particle position distribution, P(x,y), which we determine explicitly.
View Article and Find Full Text PDFAn exact statistical mechanical derivation is given of the critical Casimir forces for Ising strips with arbitrary surface fields applied to edges. Our results show that the strength as well as the sign of the force can be controlled by varying the temperature or the fields. An interpretation of the results is given in terms of a linked cluster expansion.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2010
We study the steady state of a phase-separated driven Ising lattice gas in three dimensions using computer simulations with Kawasaki dynamics. An external force field F(z) acts in the x direction parallel to the interface, creating a lateral order parameter current j^{x}(z) which varies with distance z from the interface. Above the roughening temperature, our data for "shearlike" linear variation of F(z) are in agreement with the picture wherein shear acts as effective confinement in this system, thus suppressing the interfacial capillary-wave fluctuations.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2010
Near-critical binary mixtures containing ionic solutes near a charged wall preferentially adsorbing one component of the solvent are studied. Within the Landau-Ginzburg approach extended to include electrostatic interactions and the chemical preference of ions for one component of the solvent, we obtain a simple form for the leading-order correction to the Debye-Hückel theory result for the charge density profile. Our result shows that critical adsorption influences significantly distribution of ions near the wall.
View Article and Find Full Text PDF