Background: Rare diseases constitute a heterogeneous group of approximately 7000-8000 conditions, distinguished by their low prevalence. Collectively, they present a significant global health challenge, affecting millions of people worldwide. It is estimated that rare diseases affect approximately 10% of the global population, which places a significant burden on individuals, families, and society.
View Article and Find Full Text PDFThe extracellular matrix (ECM) forms most of the tissue microenvironment and is in a constant and dynamic equilibrium with cells. The decellularization process employs physical or chemical methods, or a combination of them, to remove the cellular components of tissues and organs while preserving the architecture and composition of the ECM. Depending on the methodology used, the decellularized ECM (dECM) is then suitable for research or clinical applications.
View Article and Find Full Text PDFThe myocardium is composed of cardiomyocytes and an even greater number of fibroblasts, the latter being responsible for extracellular matrix production. From the early stages of heart development throughout the lifetime, in both normal and pathological conditions, the composition of the extracellular matrix changes and influences myocardium structure and function. The purpose of the method described here is to obtain the substrate for the culture of cardiac cells in vitro (termed cardiac ECM), mimicking the myocardial extracellular matrix in vivo.
View Article and Find Full Text PDFExtracellular matrix (ECM) is a fundamental component of the heart, guiding vital cellular processes during organ homeostasis. Most cardiovascular diseases lead to a remarkable remodeling of the ECM, accompanied by the formation of a fibrotic tissue that heavily compromises the heart function. Effective therapies for managing fibrosis and promoting physiological ECM repair are not yet available.
View Article and Find Full Text PDFThe increasing incidence of periprosthetic joint infections (PJIs) has led to a growing interest in developing strategies to prevent and treat this severe complication. The surgical site's application of antiseptic solutions to eliminate contaminating bacteria and eradicate the bacterial biofilm has been increasing over time. Even though it has been proven that combining antimicrobials could enhance their activities and help overcome acquired microbial resistance related to the topical use of antibiotics, the toxicity of integrated solutions is not well described.
View Article and Find Full Text PDFPoor nutritional status is common (estimated prevalence 5-69%) in acute coronavirus disease-2019 (COVID-19), and has been associated with hospitalization, the need for intensive care, and mortality. Body composition (BC) and muscle function have also been related in such patients to poor disease outcomes. As the evidence in the literature is limited, a cross-sectional study was carried out to determine the frequency of malnutrition in a cohort of post-acute COVID-19 patients referred to a rehabilitation center after hospital discharge.
View Article and Find Full Text PDFAlthough human Cardiac Progenitor Cells (hCPCs) are not retained by host myocardium they still improve cardiac function when injected into ischemic heart. Emerging evidence supports the hypothesis that hCPC beneficial effects are induced by paracrine action on resident cells. Extracellular vesicles (EVs) are an intriguing mechanism of cell communication based on the transport and transfer of peptides, lipids, and nucleic acids that have the potential to modulate signaling pathways, cell growth, migration, and proliferation of recipient cells.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2021
Few data are available on the body composition of pole dancers. Bioelectrical impedance analysis (BIA) is a method that is used to estimate fat-free mass (FFM) and fat mass (FM), while raw BIA variables, such as the impedance ratio (IR) and phase angle (PhA), are markers of body cell mass and the ratio between extracellular and total body water. The aim of this study was to evaluate the body composition of pole dancers compared to controls, in particular, those raw BIA variables that are considered as markers of muscle composition.
View Article and Find Full Text PDFObjectives: Musculoskeletal fitness and body composition are major components of health-related physical fitness that are expected to be linked to each other. The aim of this study was to explore the association of musculoskeletal fitness (expressed as hand grip strength [HGS]) and raw bioelectrical impedance analysis (BIA) variables and other predictors in the second and third decades of life.
Methods: Four groups of healthy normal-weight and overweight participants were studied: 130 male adolescents (age 16.
Extracellular matrix (ECM) provides biophysical and biochemical stimuli to support self-renewal, proliferation, survival, and differentiation of surrounding cells due to its content of diverse bioactive molecules. Due to these characteristics, the ECM has been recently considered a promising candidate for the creation of biological scaffolds to boost tissue regeneration. Emerging studies have demonstrated that decellularized human tissues could resemble the native ECM in their structural and biochemical profiles, preserving the three-dimensional (3D) architecture and the content of fundamental biological molecules.
View Article and Find Full Text PDFBackground & Aims: Bioimpedance analysis-derived phase angle (PhA), as marker of body cell mass and cell integrity, might be altered in obesity, a condition which is characterized by alterations in muscle structure and function. The aim of this systematic review was to evaluate whether and to which extent PhA varies in individuals/patients with excess body weight focusing on: a) changes in PhA due to obesity; b) changes in PhA after bariatric interventions or training programs.
Methods: According to PRISMA criteria, a systematic literature search until February 2021 using PubMed, Embase, Scopus, and Web of Science was performed.
Official tests are used to assess the fitness status of soccer referees, and their results correlate with match performance. However, FIFA-approved tests expose the referees to high physical demands and are difficult to implement during the sportive year. The aim of our study was to evaluate the correlation between the 6 × 40-m sprint and Yo-Yo Intermittent Recovery Level 1 (IR1) official tests and other field-based tests that require no or little equipment, are not time-consuming, and impose low physical demands.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2020
Neuromotor training can improve motor performance in athletes and patients. However, few data are available about their effect on reaction time (RT). We investigated the influence of video observation/motor imagery (VO/MI) on simple RT to visual and auditory stimuli.
View Article and Find Full Text PDFThe brachial plexus represents a complex anatomical structure in the upper limb. This "network" of peripheral nerves permits the rearrangement of motor efferent fibers, coming from different spinal nerves, in several terminal branches directed to upper limb muscles. Moreover, afferent information coming from different cutaneous regions in upper limb are sorted in different spinal nerves through the brachial plexus.
View Article and Find Full Text PDFCardiac adverse remodeling is characterized by biological changes that affect the composition and architecture of the extracellular matrix (ECM). The consequently disrupted signaling can interfere with the balance between cardiogenic and pro-fibrotic phenotype of resident cardiac stromal primitive cells (CPCs). The latter are important players in cardiac homeostasis and can be exploited as therapeutic cells in regenerative medicine.
View Article and Find Full Text PDFDecellularized extracellular matrix is one of the most promising biological scaffold supporting in vitro tissue growth and in vivo tissue regeneration in both preclinical research and clinical practice. In case of thick tissues or even organs, conventional static decellularization methods based on chemical or enzymatic treatments are not effective in removing the native cellular material without affecting the extracellular matrix. To overcome this limitation, dynamic decellularization methods, mostly based on perfusion and agitation, have been proposed.
View Article and Find Full Text PDFPhysical stimuli are crucial for the structural and functional maturation of tissues both in vivo and in vitro. In tissue engineering applications, bioreactors have become fundamental and effective tools for providing biomimetic culture conditions that recapitulate the native physical stimuli. In addition, bioreactors play a key role in assuring strict control, automation, and standardization in the production process of cell-based products for future clinical application.
View Article and Find Full Text PDFNational and international healthcare organizations propose guidelines for physical activity worldwide, defining its characteristics. These guidelines' practical applications are difficult to estimate, since they are not fully followed. The aim of the present cross-sectional observational study was to assess awareness about guidelines for physical activity and to evaluate their practical applications in a sample of the Italian population.
View Article and Find Full Text PDFThe complex and highly organized environment in which cells reside consists primarily of the extracellular matrix (ECM) that delivers biological signals and physical stimuli to resident cells. In the native myocardium, the ECM contributes to both heart compliance and cardiomyocyte maturation and function. Thus, myocardium regeneration cannot be accomplished if cardiac ECM is not restored.
View Article and Find Full Text PDFBalance impairments are a relevant problem in patients with diabetes, and interventions to manage this issue represent a public health need. This study reviewed the literature about the effectiveness of Tai Chi on balance improvement in patients with type 2 diabetes. Springerlink, MEDLINE, PubMed, CINAHL, Web of Science, Scopus, and Cochrane CENTRAL databases were screened.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) could be considered, to date, a promising source of pluripotent cells for the management of currently untreatable diseases, for the reconstitution and regeneration of injured tissues and for the development of new drugs. Despite all the advantages related to the use of iPSCs, such as the low risk of rejection, the lessened ethical issues, and the possibility to obtain them from both young and old patients without any difference in their reprogramming potential, problems to overcome are still numerous. In fact, cell reprogramming conducted with viral and integrating viruses can cause infections and the introduction of required genes can induce a genomic instability of the recipient cell, impairing their use in clinic.
View Article and Find Full Text PDFTendinopathies are very common in general population and a huge number of tendon-related procedures take place annually worldwide, with significant socio-economic repercussions. Numerous treatment options are commonly used for tendon disorders. Besides pharmacological and physical therapy, nutrition could represent an additional tool for preventing and treating this complex pathology that deserve a multidisciplinary approach.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell-like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used.
View Article and Find Full Text PDFScaffolds populated with human cardiac progenitor cells (CPCs) represent a therapeutic opportunity for heart regeneration after myocardial infarction. In this work, square-grid scaffolds are prepared by melt-extrusion additive manufacturing from a polyurethane (PU), further subjected to plasma treatment for acrylic acid surface grafting/polymerization and finally grafted with laminin-1 (PU-LN1) or gelatin (PU-G) by carbodiimide chemistry. LN1 is a cardiac niche extracellular matrix component and plays a key role in heart formation during embryogenesis, while G is a low-cost cell-adhesion protein, here used as a control functionalizing molecule.
View Article and Find Full Text PDFCardiac tissue engineering by means of synthetic or natural scaffolds combined with stem/progenitor cells is emerging as the response to the unsatisfactory outcome of approaches based solely on the injection of cells. Parenchymal and supporting cells are surrounded, in vivo, by a specialized and tissue-specific microenvironment, consisting mainly of extracellular matrix (ECM) and soluble factors incorporated in the ECM. Since the naturally occurring ECM is the ideal platform for ensuring cell engraftment, survival, proliferation, and differentiation, the acellular native ECM appears by far the most promising and appealing substrate among all biomaterials tested so far.
View Article and Find Full Text PDF