Publications by authors named "Anna M Planas"

Histone deacetylase SIRT1 represses gene expression through the deacetylation of histones and transcription factors and is involved in the protective cell response to stress and aging. However, upon endoplasmic reticulum (ER) stress, SIRT1 impairs the IRE1α branch of the unfolded protein response (UPR) through the inhibition of the transcriptional activity of XBP-1 and SIRT1 deficiency is beneficial under these conditions. We hypothesized that SIRT1 deficiency may unlock the blockade of transcription factors unrelated to the UPR promoting the synthesis of chaperones and improving the stability of immature proteins or triggering the clearance of unfolded proteins.

View Article and Find Full Text PDF

Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) ≤2), compared to those patients with marked disability (mRS = 4-5).

View Article and Find Full Text PDF

Diseases of the central nervous system (CNS) are often associated with vascular disturbances or inflammation and frequently both. Consequently, endothelial cells and macrophages are key cellular players that mediate pathology in many CNS diseases. Macrophages in the brain consist of the CNS-associated macrophages (CAMs) [also referred to as border-associated macrophages (BAMs)] and microglia, both of which are close neighbours or even form direct contacts with endothelial cells in microvessels.

View Article and Find Full Text PDF

Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity.

View Article and Find Full Text PDF

Uric acid (UA) is a strong endogenous antioxidant that neutralizes the toxicity of peroxynitrite and other reactive species on the neurovascular unit generated during and after acute brain ischemia. The realization that a rapid reduction of UA levels during an acute ischemic stroke was associated with a worse stroke outcome paved the way to investigate the value of exogenous UA supplementation to counteract the progression of redox-mediated ischemic brain damage. The long translational journey for UA supplementation recently reached a critical milestone when the results of the multicenter NIH stroke preclinical assessment network (SPAN) were reported.

View Article and Find Full Text PDF

Hyperglycemia has been linked to worsening outcomes after subarachnoid hemorrhage (SAH). Nevertheless, the mechanisms involved in the pathogenesis of SAH have been scarcely evaluated so far. The role of hyperglycemia was assessed in an experimental model of SAH by T weighted, dynamic contrast-enhanced magnetic resonance imaging (TW and DCE-MRI), [F]BR-351 PET imaging and immunohistochemistry.

View Article and Find Full Text PDF

Vascular endothelial function is challenged during cerebral ischemia and reperfusion. The endothelial responses are involved in inflammatory leukocyte attraction, adhesion and infiltration, blood-brain barrier leakage, and angiogenesis. This study investigated gene expression changes in brain endothelial cells after acute ischemic stroke using transcriptomics and translatomics.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers analyzed ischaemic stroke (IS) cases that occurred within eight days of COVID-19 onset to determine if they have a unique genetic background compared to other stroke types.
  • Using a method called SUPERGNOVA, they identified specific genomic regions related to large artery atherosclerosis (LAA) and cardioembolic stroke (CES) from a cohort of 73 IS-COV patients and 701 control subjects.
  • The study found four genetic loci associated with CES and significant polygenic risk scores for LAA, suggesting IS-COV patients may share genetic traits with these stroke subtypes; more research is needed to see if these traits are specific to viral infection or common in the general population.
View Article and Find Full Text PDF
Article Synopsis
  • Stroke is a leading cause of death and long-term disability worldwide, with current treatments mainly focused on acute reperfusion therapies for ischemic stroke.
  • In vivo rodent models, especially genetically modified mice, are crucial for understanding stroke mechanisms and exploring new treatment methods.
  • The common experimental approach involves a minimally invasive procedure to occlude the middle cerebral artery (MCA), allowing researchers to monitor blood flow and assess neurological and tissue damage.
View Article and Find Full Text PDF

Background & Aims: Ductular reaction expansion is associated with poor prognosis in patients with advanced liver disease. However, the mechanisms promoting biliary cell proliferation are largely unknown. Here, we identify neutrophils as drivers of biliary cell proliferation and the defective wound-healing response.

View Article and Find Full Text PDF

Background: Respiratory and urinary tract infections are frequent complications in patients with severe stroke. Stroke-associated infection is mainly due to opportunistic commensal bacteria of the microbiota that may translocate from the gut. We investigated the mechanisms underlying gut dysbiosis and poststroke infection.

View Article and Find Full Text PDF

Aging is associated to progressive changes impairing fundamental cellular and tissue functions, and the relationships amongst them through the vascular and immune systems. Aging factors are key to understanding the pathophysiology of stroke since they increase its risk and worsen its functional outcome. Most currently recognised hallmarks of aging are also involved in the cerebral responses to stroke.

View Article and Find Full Text PDF

Microglia are very sensitive to changes in the environment and respond through morphological, functional and metabolic adaptations. To depict the modifications microglia undergo under healthy and pathological conditions, we developed free access image analysis scripts to quantify microglia morphologies and phagocytosis. Neuron-glia cultures, in which microglia express the reporter tdTomato, were exposed to excitotoxicity or excitotoxicity + inflammation and analysed 8 h later.

View Article and Find Full Text PDF

Microglial cells of the aged brain manifest signs of dysfunction that could contribute to the worse neurological outcome of stroke in the elderly. Treatment with colony-stimulating factor 1 receptor antagonists enables transient microglia depletion that is followed by microglia repopulation after treatment interruption, causing no known harm to mice. We tested whether this strategy restored microglia function and ameliorated stroke outcome in old mice.

View Article and Find Full Text PDF

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of , , or in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L).

View Article and Find Full Text PDF

Objective: This study was undertaken to investigate whether adjunct alteplase improves brain reperfusion following successful thrombectomy.

Methods: This single-center, randomized, double-blind, placebo-controlled study included 36 patients (mean [standard deviation] = 70.8 [13.

View Article and Find Full Text PDF
Article Synopsis
  • A genome-wide study involving nearly 12,000 COVID-19 positive cases in Spain identified significant genetic variants linked to hospitalization, with specific loci associated with males (3p21.31, 21q22.11) and females (9q21.32 near TLE1).
  • A second phase combined data with an additional cohort, revealing two new risk loci (9p13.3, 19q13.12) related to candidate genes AQP3 and ARHGAP33, and confirmed earlier findings in males for some loci.
  • The analysis highlighted genetic differences in COVID-19 severity between sexes and ages, with more pronounced heritability in males, particularly those over
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers.

View Article and Find Full Text PDF

Abnormalities in myelination are associated to behavioral and cognitive dysfunction in neurodevelopmental psychiatric disorders. Thus, therapies to promote or accelerate myelination could potentially ameliorate symptoms in autism. Clemastine, a histamine H1 antagonist with anticholinergic properties against muscarinic M1 receptor, is the most promising drug with promyelinating properties.

View Article and Find Full Text PDF

The activation of microglia and the infiltration of macrophages are hallmarks of neuroinflammation after acute brain injuries, including traumatic brain injury (TBI). The two myeloid populations share many features in the post-injury inflammatory response, thus, being antigenically indistinguishable. Recently Tmem119, a type I transmembrane protein specifically expressed by microglia under physiological conditions, was proposed as a tool to differentiate resident microglia from blood-borne macrophages, not expressing it.

View Article and Find Full Text PDF

BackgroundThere is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition.MethodsWe combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank.

View Article and Find Full Text PDF

Leukocyte infiltration and blood-brain barrier breakdown contribute to secondary brain damage after traumatic brain injury (TBI). TBI induces neuroimmune responses triggering pathogenic complement activation through different pathways, including the lectin pathway. We investigated mechanisms underlying mannose-binding lectin (MBL)-mediated brain damage focusing on neutrophil infiltration and blood-brain barrier breakdown in a TBI mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • Growing research suggests that perivascular tissue plays a significant role in controlling blood vessel function, particularly focusing on the arachnoid membrane surrounding the middle cerebral artery (MCA).
  • The study finds that the presence of the arachnoid membrane leads to vasoconstriction in the MCA, influenced by a signaling molecule called sphingosine-1-phosphate (S1P), and this effect is consistent across different mouse strains and ages.
  • The findings highlight the importance of S1P in regulating artery tone and suggest that targeting S1P receptors could be a potential therapeutic approach for vascular issues related to the arachnoid membrane.
View Article and Find Full Text PDF

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.

View Article and Find Full Text PDF