Publications by authors named "Anna M Molina"

Cancer is the second largest cause of death worldwide with the number of new cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy. However, success has been frequently limited, in particular when treating late-stage solid tumors.

View Article and Find Full Text PDF

Proteins often possess highly specific biological activities that make them potential therapeutics, but their physical and chemical instabilities during formulation, storage, and delivery have limited their medical use. Therefore, engineering of nanosized vehicles to stabilize protein therapeutics and to allow for targeted treatment of complex diseases, such as cancer, is of considerable interest. A micelle-like nanoparticle (NP) was designed for both, tumor targeting and stimulus-triggered release of the apoptotic protein cytochrome c (Cyt c).

View Article and Find Full Text PDF

Effective cancer treatment needs both, passive and active targeting approaches, to achieve highly specific drug delivery to the target cells while avoiding cytotoxicity to normal cells. Protein drugs are useful in this context because they can display excellent specificity and potency. However, their use in therapeutic formulations is limited due to their physical and chemical instability during storage and administration.

View Article and Find Full Text PDF

Photodynamic cancer therapy is still limited in its efficiency because of a lack of targeted methods avoiding non-specific toxicity. To overcome this we developed a system that is solely effective upon cellular uptake and intracellular activation by incorporating redox-sensitive chemistry. We used a nanoprecipitation method to obtain human serum albumin nanoparticles (HSA NP) with a diameter of 295 ± 5 nm and decorated them with the photosensitizer (PS) chlorin e6 (Ce6).

View Article and Find Full Text PDF