Publications by authors named "Anna M Locke"

This strategic plan summarizes the major accomplishments achieved in the last quinquennial by the soybean [Glycine max (L.) Merr.] genetics and genomics research community and outlines key priorities for the next 5 years (2024-2028).

View Article and Find Full Text PDF

Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network that determines protein functionality directly from the protein sequence.

View Article and Find Full Text PDF

Background: The potential of weed species to respond to selection forces affecting the evolution of weedy traits such as competitive ability is poorly understood. This research characterized evolutionary growth changes in a single Abutilon theophrasti Medik. population comparing multiple generations collected from 1988 to 2016.

View Article and Find Full Text PDF

Plants respond to mild warm temperature conditions by increased elongation growth of organs to enhance cooling capacity, in a process called thermomorphogenesis. To this date, the regulation of thermomorphogenesis has been exclusively shown to intersect with light signalling pathways. To identify regulators of thermomorphogenesis that are conserved in flowering plants, we map changes in protein phosphorylation in both dicots and monocots exposed to warm temperature.

View Article and Find Full Text PDF

Crops with resilience to multiple climatic stresses are essential for increased yield stability. Here, we evaluate the interaction between two loci associated with flooding survival in rice ( L.).

View Article and Find Full Text PDF

Many plant physiological processes have diurnal patterns regulated by diurnal environmental changes and circadian rhythms, but the transcriptional underpinnings of many of these cycles have not been studied in major crop species under field conditions. Here, we monitored the transcriptome of field-grown soybean () during daylight hours in the middle of the growing season with RNA-seq. The analysis revealed 21% of soybean genes were differentially expressed over the course of the day.

View Article and Find Full Text PDF

The rice (Oryza sativa L.) ethylene-responsive transcription factor gene SUB1A-1 confers tolerance to prolonged, complete submergence by limiting underwater elongation growth. Upon desubmergence, SUB1A-1 genotypes rapidly recover photosynthetic function and recommence development towards flowering.

View Article and Find Full Text PDF

Stimulation of C3 crop yield by rising concentrations of atmospheric carbon dioxide ([CO2]) is widely expected to counteract crop losses that are due to greater drought this century. But these expectations come from sparse field trials that have been biased towards mesic growth conditions. This eight-year study used precipitation manipulation and year-to-year variation in weather conditions at a unique open-air field facility to show that the stimulation of soybean yield by elevated [CO2] diminished to zero as drought intensified.

View Article and Find Full Text PDF

Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011.

View Article and Find Full Text PDF

Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K(leaf)), a measure of the leaf's water transport capacity, can often be linked to changes in microenvironment and transpiration demand.

View Article and Find Full Text PDF

Background And Aims: Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

View Article and Find Full Text PDF

Background: Biochemical models predict that photosynthesis in C(3) plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (V(c,max)), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO(2)] levels Rubisco is not saturated; consequently, elevating [CO(2)] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO(2)] is predicted to exceed 550 ppm by 2050.

View Article and Find Full Text PDF