Publications by authors named "Anna M Jensen"

The percentage of respiratory and photorespiratory CO2 refixed in leaves (Pr) represents part of the CO2 used in photosynthesis. The importance of Pr as well as differences between species and functional types are still not well investigated. In this study, we examine how Pr differs between six temperate and boreal woody species: Betula pendula, Quercus robur, Larix decidua, Pinus sylvestris, Picea abies and Vaccinium vitis-idaea.

View Article and Find Full Text PDF

Boreal peatland forests have relatively low species diversity and thus impacts of climate change on one or more dominant species could shift ecosystem function. Despite abundant soil water availability, shallowly rooted vascular plants within peatlands may not be able to meet foliar demand for water under drought or heat events that increase vapor pressure deficits while reducing near surface water availability, although concurrent increases in atmospheric CO could buffer resultant hydraulic stress. We assessed plant water relations of co-occurring shrub (primarily Rhododendron groenlandicum and Chamaedaphne calyculata) and tree (Picea mariana and Larix laricina) species prior to, and in response to whole ecosystem warming (0 to +9°C) and elevated CO using 12.

View Article and Find Full Text PDF

Mesophyll resistance to CO diffusion (r) and the maximum carboxylation rate of Rubisco (V) affect photosynthetic rates, and can potentially also influence the percentage of respiratory and photorespiratory CO being refixated (P) by mesophyll cells. Here we investigated how various leaf anatomical traits (e.g.

View Article and Find Full Text PDF

We quantified seasonal CO2 assimilation capacities for seven dominant vascular species in a wet boreal forest peatland then applied data to a land surface model parametrized to the site (ELM-SPRUCE) to test if seasonality in photosynthetic parameters results in differences in simulated plant responses to elevated CO2 and temperature. We collected seasonal leaf-level gas exchange, nutrient content and stand allometric data from the field-layer community (i.e.

View Article and Find Full Text PDF

The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.

View Article and Find Full Text PDF

Our objective was to analyze and summarize data describing photosynthetic parameters and foliar nutrient concentrations from tropical forests in Panama to inform model representation of phosphorus (P) limitation of tropical forest productivity. Gas exchange and nutrient content data were collected from 144 observations of upper canopy leaves from at least 65 species at two forest sites in Panama, differing in species composition, rainfall and soil fertility. Photosynthetic parameters were derived from analysis of assimilation rate vs internal CO concentration curves (A/C ), and relationships with foliar nitrogen (N) and P content were developed.

View Article and Find Full Text PDF

Shrubs are multi-stemmed short woody plants, more widespread than trees, important in many ecosystems, neglected in ecology compared to herbs and trees, but currently in focus due to their global expansion. We present a novel model based on scaling relationships and four hypotheses to explain the adaptive significance of shrubs, including a review of the literature with a test of one hypothesis. Our model describes advantages for a small shrub compared to a small tree with the same above-ground woody volume, based on larger cross-sectional stem area, larger area of photosynthetic tissue in bark and stem, larger vascular cambium area, larger epidermis (bark) area, and larger area for sprouting, and faster production of twigs and canopy.

View Article and Find Full Text PDF

NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.

View Article and Find Full Text PDF

Background And Aims: The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA.

Methods: Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years.

View Article and Find Full Text PDF

Elevated atmospheric CO2 (eCO2) often increases photosynthetic CO2 assimilation (A) in field studies of temperate tree species. However, there is evidence that A may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free-air CO2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following 2 years of ∼40 % enhancement of CO2.

View Article and Find Full Text PDF

Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analysed in conjunction with model simulations to determine the effects of mesophyll conductance (g(m)) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite g(m) results in up to 75% underestimation for maximum carboxylation rate V(cmax), 60% for maximum electron transport rate J(max), and 40% for triose phosphate utilization rate T(u) . V(cmax) is most sensitive, J(max) is less sensitive, and T(u) has the least sensitivity to the variation of g(m).

View Article and Find Full Text PDF