Publications by authors named "Anna M Fiore-Donno"

Protists, a crucial part of the soil food web, are increasingly acknowledged as significant influencers of nutrient cycling and plant performance in farmlands. While topographical and climatic factors are often considered to drive microbial communities on a continental scale, higher trophic levels like heterotrophic protists also rely on their food sources. In this context, bacterivores have received more attention than fungivores.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how seasonal changes and elevation impact soil microbial communities in alpine grasslands, particularly focusing on interactions within the soil food web.
  • Researchers collected 158 soil samples from three mountains, analyzing them during spring snowmelt and summer using metatranscriptomics to assess prokaryotic and eukaryotic communities.
  • The findings indicate increased consumer pressure from spring to summer, resulting in greater diversity among prey communities, which helps sustain the vital bacterial and fungal communities necessary for ecosystem health.
View Article and Find Full Text PDF

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands.

View Article and Find Full Text PDF

Determining the influence of climate in driving the global distribution of soil microbial communities is fundamental to help predict potential shifts in soil food webs and ecosystem functioning under global change scenarios. Herein, we used a global survey including 80 dryland ecosystems from six continents, and found that the relative abundance of ecological clusters formed by taxa involved in bacteria-fungi and bacteria-cercozoa bipartite networks was highly sensitive to changes in temperature and aridity. Importantly, such a result was maintained when controlling for soil, geographical location and vegetation attributes, being pH and soil organic carbon important determinants of the relative abundance of the ecological clusters.

View Article and Find Full Text PDF

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups.

View Article and Find Full Text PDF

Tree canopies are colonized by billions of highly specialized microorganisms that are well adapted to the highly variable microclimatic conditions, caused by diurnal fluctuations and seasonal changes. In this study, we investigated seasonality patterns of protists in the tree canopies of a temperate floodplain forest via high-throughput sequencing with group-specific primers for the phyla Cercozoa and Endomyxa. We observed consistent seasonality, and identified divergent spring and autumn taxa.

View Article and Find Full Text PDF

Tree canopies provide habitats for diverse and until now, still poorly characterized communities of microbial eukaryotes. One of the most general patterns in community ecology is the increase in species richness with increasing habitat diversity. Thus, environmental heterogeneity of tree canopies should be an important factor governing community structure and diversity in this subsystem of forest ecosystems.

View Article and Find Full Text PDF

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands.

View Article and Find Full Text PDF

Functional traits are increasingly used in ecology to link the structure of microbial communities to ecosystem processes. We investigated two important protistan lineages, Cercozoa and Endomyxa (Rhizaria) in soil using Illumina sequencing and analyzed their diversity and functional traits along with their responses to environmental factors in grassland and forest across Germany. From 600 soil samples, we obtained 2,101 Operational Taxonomic Units representing ∼18 million Illumina reads (region V4, 18S rRNA gene).

View Article and Find Full Text PDF

Plants modulate the soil microbiota by root exudation assembling a complex rhizosphere microbiome with organisms spanning different trophic levels. Here, we assessed the diversity of bacterial, fungal and cercozoan communities in landraces and modern varieties of wheat. The dominant taxa within each group were the bacterial phyla Proteobacteria, Actinobacteria and Acidobacteria; the fungi phyla Ascomycota, Chytridiomycota and Basidiomycota; and the Cercozoa classes Sarcomonadea, Thecofilosea and Imbricatea.

View Article and Find Full Text PDF

Myxomycetes (also called Myxogastria or colloquially, slime molds) are worldwide occurring soil amoeboflagellates. Among Amoebozoa, they have the notable characteristic to form, during their life cycle, macroscopic fruiting bodies, that will ultimately release spores. Some 1,000 species have been described, based on the macroscopic and microscopic characteristics of their fruiting bodies.

View Article and Find Full Text PDF

We have compiled a database of functional traits for two widespread and ecologically important groups of protists, Cercozoa and Endomyxa (Rhizaria). The functional traits of microorganisms are crucially important for interpreting results from environmental sequencing surveys. Linking morphological and ecological traits to environmental factors is common practice in studies involving micro- and macroorganisms, but is rarely applied to protists.

View Article and Find Full Text PDF

Forest litter harbors complex networks of microorganisms whose major components are bacteria, fungi and protists. Protists, being highly selective consumers of bacteria and fungi could influence decomposition processes by shifting competitive microbial interactions. We investigated the eukaryotic diversity from 18 samples of one-year beech (Fagus sylvatica) leaf litter by RNA-based high-throughput sequencing of the small-subunit ribosomal RNA gene.

View Article and Find Full Text PDF

Soil protists are increasingly appreciated as essential components of soil foodwebs; however, there is a dearth of information on the factors structuring their communities. Here we investigate the importance of different biotic and abiotic factors as key drivers of spatial and seasonal distribution of protistan communities. We conducted an intensive survey of a 10 m grassland plot in Germany, focusing on a major group of protists, the Cercozoa.

View Article and Find Full Text PDF

Protists are the most important predators of soil microbes like bacteria and fungi and are highly diverse in terrestrial ecosystems. However, the structure of protistan communities throughout the soil profile is still poorly explored. Here, we used Illumina sequencing to track differences in the relative abundance and diversity of Cercozoa, a major group of protists, at two depths; 10-30 cm (topsoil) and 60-75 cm (subsoil) in an agricultural field in Germany.

View Article and Find Full Text PDF

Myxogastria (also called Myxomycetes or plasmodial slime-moulds) are mostly known through their usually conspicuous fruiting bodies. Another unifying trait is the presence of a facultative flagellate stage along with the obligate amoeboid stage. Here we show with two-gene phylogenies (SSU rRNA and EF-1alpha genes) that the incertae sedis, non-flagellate Echinosteliopsis oligospora belongs to the dark-spore clade (Fuscisporidia) of the Myxogastria.

View Article and Find Full Text PDF

We describe the performance of a new metabarcoding approach to investigate the environmental diversity of a prominent group of widespread unicellular organisms, the Cercozoa. Cercozoa is an immensely large group of protists, and although it may dominate in soil and aquatic ecosystems, its environmental diversity remains undersampled. We designed PCR primers targeting the hypervariable region V4 of the small subunit ribosomal RNA (SSU or 18S) gene, which is the recommended barcode marker for Cercozoa.

View Article and Find Full Text PDF

Although protists occupy a vast range of habitats and are known to interact with plants among other things via disease suppression, competition or growth stimulation, their contributions to the 'phytobiome' are not well described. To contribute to a more comprehensive picture of the plant holobiont, we examined cercozoan and oomycete taxa living in association with the model plant Arabidopsis thaliana grown in two different soils. Soil, roots, leaves and wooden toothpicks were analysed before and after surface sterilization.

View Article and Find Full Text PDF

Background: Acanthamoebidae is a "family" level amoebozoan group composed of the genera Acanthamoeba, Protacanthamoeba, and very recently Luapeleamoeba. This clade of amoebozoans has received considerable attention from the broader scientific community as Acanthamoeba spp. represent both model organisms and human pathogens.

View Article and Find Full Text PDF

This study reveals the diversity and distribution of two major ubiquitous groups of soil amoebae, the genus Acanthamoeba and the Myxomycetes (plasmodial slime-moulds) that are rarely, if ever, recovered in environmental sampling studies. We analyzed 150 grassland soil samples from three Biodiversity Exploratories study regions in Germany. We developed specific primers targeting the V2 variable region in the first part of the small subunit of the ribosomal RNA gene for high-throughput pyrotag sequencing.

View Article and Find Full Text PDF

Myxomycetes or plasmodial slime molds are widespread and very common soil amoebae with the ability to form macroscopic fruiting bodies. Even if their phylogenetic position as a monophyletic group in Amoebozoa is well established, their internal relationships are still not entirely resolved. At the base of the most intensively studied dark-spored clade lies the order Echinosteliales, whose highly divergent small subunit ribosomal (18S) RNA genes represent a challenge for phylogenetic reconstructions.

View Article and Find Full Text PDF

Decaying wood hosts a large diversity of seldom investigated protists. Environmental sequencing offers novel insights into communities, but has rarely been applied to saproxylic protists. We investigated the diversity of bright-spored wood-inhabiting Myxomycetes by environmental sequencing.

View Article and Find Full Text PDF

Animals and fungi independently evolved from the protozoan phylum Choanozoa, these three groups constituting a major branch of the eukaryotic evolutionary tree known as opisthokonts. Opisthokonts and the protozoan phylum Amoebozoa (amoebae plus slime moulds) were previously argued to have evolved independently from the little-studied, largely flagellate, protozoan phylum, Sulcozoa. Sulcozoa are a likely evolutionary link between opisthokonts and the more primitive excavate flagellates that have ventral feeding grooves and the most primitive known mitochondria.

View Article and Find Full Text PDF

Amoebozoa is a key phylum for eukaryote phylogeny and evolutionary history, but its phylogenetic validity has been questioned since included species are very diverse: amoebo-flagellate slime-moulds, naked and testate amoebae, and some flagellates. 18S rRNA gene trees have not firmly established its internal topology. To rectify this we sequenced cDNA libraries for seven diverse Amoebozoa and conducted phylogenetic analyses for 109 eukaryotes (17-18 Amoebozoa) using 60-188 genes.

View Article and Find Full Text PDF

Acanthamoeba is a very abundant genus of soil protists with fundamental importance in nutrient cycling, but several strains can also act as human pathogens. The systematics of the genus is still unclear: currently 18 small-subunit (SSU or 18S) ribosomal RNA sequence types (T1-T18) are recognized, which sometimes contain several different morphotypes; on the other hand, some morphological identical strains belong to different sequence types, sometimes appearing in paraphyletic positions. In this study, we cultivated 65 Acanthamoeba clones from soil samples collected under grassland at three separate locations in the Netherlands, in Sardinia and at high altitude mountains in Tibet.

View Article and Find Full Text PDF