The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and control transport of macromolecules between the two compartments. Recently, it has been shown that the axial distance between the inner nuclear membrane and the cytoplasmic side of the NPC can be measured using dual-color metal-induced energy transfer (MIET).
View Article and Find Full Text PDFThe mechanisms of exciton generation and recombination in semiconductor nanocrystals are crucial to the understanding of their photophysics and for their application in nearly all fields. While many studies have been focused on type-I heterojunction nanocrystals, the photophysics of type-II nanorods, where the hole is located in the core and the electron is located in the shell of the nanorod, remain largely unexplored. In this work, by scanning single nanorods through the focal spot of radially and azimuthally polarized laser beams and by comparing the measured excitation patterns with a theoretical model, we determine the dimensionality of the excitation transition dipole of single type-II nanorods.
View Article and Find Full Text PDFOur paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension.
View Article and Find Full Text PDFWe report a novel method, dual-color axial nanometric localization by metal--induced energy transfer, and combine it with Förster resonance energy transfer (FRET) for resolving structural details in cells on the molecular level. We demonstrate the capability of this method on cytoskeletal elements and adhesions in human mesenchymal stem cells. Our approach is based on fluorescence-lifetime-imaging microscopy and allows for precise determination of the three-dimensional architecture of stress fibers anchoring at focal adhesions, thus yielding crucial information to understand cell-matrix mechanics.
View Article and Find Full Text PDFThis study focuses on the mechanism of fluorescence blinking of single carbon nanodots, which is one of their key but less understood properties. The results of our single-particle fluorescence study show that the mechanism of carbon nanodots blinking has remarkable similarities with that of semiconductor quantum dots. In particular, the temporal behavior of carbon nanodot blinking follows a power law both at room and at cryogenic temperatures.
View Article and Find Full Text PDFThe nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively.
View Article and Find Full Text PDFSuccess in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges.
View Article and Find Full Text PDFWe present the results of a comprehensive photoluminescence study of defect centres in single SiO2 nanoparticles. We show that the photo-physical properties of the luminescent centres strongly resemble those of single dye molecules. However, these properties exhibit a large variability from particle to particle due to the different local chemical environment around each centre of each particle.
View Article and Find Full Text PDFInorganic carbon nanomaterials, also called carbon nanodots, exhibit a strong photoluminescence with unusual properties and, thus, have been the focus of intense research. Nonetheless, the origin of their photoluminescence is still unclear and the subject of scientific debates. Here, we present a single particle comprehensive study of carbon nanodot photoluminescence, which combines emission and lifetime spectroscopy, defocused emission dipole imaging, azimuthally polarized excitation dipole scanning, nanocavity-based quantum yield measurements, high resolution transmission electron microscopy, and atomic force microscopy.
View Article and Find Full Text PDFWe present a new concept for measuring distance values of single molecules from a surface with nanometer accuracy using the energy transfer from the excited molecule to surface plasmons of a metal film. We measure the fluorescence lifetime of individual dye molecules deposited on a dielectric spacer as a function of a spacer thickness. By using our theoretical model, we convert the lifetime values into the axial distance of individual molecules.
View Article and Find Full Text PDFUsing a tunable optical subwavelength microcavity, we demonstrate controlled modification of the vibronic relaxation dynamics in a single SiO(2) nanoparticle. By varying the distance between the cavity mirrors we change the electromagnetic field mode structure around a single nanoparticle and the radiative transition probability from the lowest vibronic level of the electronically excited state to the progression of phonon levels in the electronic ground state. We demonstrate redistribution of the photoluminescence spectrum between zero-phonon and phonon-assisted bands and modification of the excited state lifetime of the same individual SiO(2) particle measured at different cavity lengths.
View Article and Find Full Text PDFWe present a novel approach for convenient tuning of the local refractive index around nanostructures. We apply this technique to study the influence of the local refractive index on the radiative decay time of CdSe/ZnS quantum dots with three distinct emission wavelengths. The dependence of the luminescence decay time on the environment is well described by an effective medium approach.
View Article and Find Full Text PDFUsing a tunable optical microresonator with subwavelength spacing, we demonstrate controlled modulation of the radiative transition rate of a single molecule, which is measured by monitoring its fluorescence lifetime. Variation of the cavity length changes the local mode structure of the electromagnetic field, which modifies the radiative coupling of an emitting molecule to that field. By comparing the experimental data with a theoretical model, we extract both the pure radiative transition rate as well as the quantum yield of individual molecules.
View Article and Find Full Text PDFWe study the dimensionality of the excitation transition dipole moment for single CdSe/ZnS core-shell nanocrystals using azimuthally and radially polarized laser modes. The comparison of measured and simulated single nanocrystal excitation patterns shows that single CdSe/ZnS quantum dots possess a spherically degenerated excitation transition dipole. We show that the dimensionality of the excitation transition dipole moment distribution is the same for all individual CdSe/ZnS nanocrystals, disregarding the difference in core size and irrespective of variations in the local environment.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2011
Tautomerism process of single fluorescent molecules was studied by means of confocal microscopy in combination with azimuthally or radially polarized laser beams. During a tautomerism process the transition dipole moment (TDM) of a molecule changes its orientation which can be visualized by the fluorescence excitation image of the molecule. We present experimental and theoretical studies of two porphyrazine-type molecules and one type of porphyrin molecule: a symmetrically substituted metal-free phthalocyanine and porphyrin, and nonsymmetrically substituted porphyrazine.
View Article and Find Full Text PDFA tightly focused radially polarized laser beam forms an unusual bimodal field distribution in an optical lambda/2-microresonator. We use a single-molecule dipole to probe the vector properties of this field distribution by tuning the resonator length with nanometer precision. Comparing calculated and experimental excitation patterns provides the three-dimensional orientation of the single-molecule dipole in the microresonator.
View Article and Find Full Text PDFSilicon nanocrystals were synthesized by CO(2) laser pyrolysis of SiH(4). The fresh silicon nanopowder was oxidized in water to obtain SiO(2) nanoparticles (NPs) exhibiting strong red-orange photoluminescence. Samples of SiO(2) NPs embedded in low concentration in a thin polymer layer were prepared by spin-coating a dedicated solution on quartz cover slides.
View Article and Find Full Text PDF