Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gα inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCβ pathway.
View Article and Find Full Text PDFKazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2022
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy.
View Article and Find Full Text PDFThe mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status.
View Article and Find Full Text PDFBackground: Acute Myeloid Leukemia (AML) is a genetically heterogeneous disease characterized by uncontrolled proliferation of precursor myeloid-lineage cells in the bone marrow. AML is also characterized by patients with poor long-term survival outcomes due to relapse. Many efforts have been made to understand the biological heterogeneity of AML and the challenges to develop new therapies are therefore enormous.
View Article and Find Full Text PDFProper endosomal trafficking of ligand-activated G-protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B; one of two isoforms encoded by CCR2), endocytic recycling is important to sustain monocyte migration, whereas filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway.
View Article and Find Full Text PDFThe guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known.
View Article and Find Full Text PDFIn platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested.
View Article and Find Full Text PDFContrary to previous assumptions, G proteins do not permanently reside on the plasma membrane, but are constantly monitoring the cytoplasmic surfaces of the plasma membrane and endomembranes. Here, we report that the Gαq and Gα11 proteins locate at the mitochondria and play a role in a complex signaling pathway that regulates mitochondrial dynamics. Our results provide evidence for the presence of the heteromeric G protein (Gαq/11βγ) at the outer mitochondrial membrane and for Gαq at the inner membrane.
View Article and Find Full Text PDFIn the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector.
View Article and Find Full Text PDFBackground: Filamin A (FLNa) is an actin-crosslinking protein necessary for stabilizing the cell surface, organizing protrusive activity and for promoting efficient cellular translocation. Recently, our group demonstrated the requirement of FLNa for the internalization of the chemokine receptor CCR2B.
Methodology And Principal Findings: In order to study the role of FLNa in vitro and in real-time, we have developed a fluorescent FLNa-EGFP construct.
Exp Cell Res
February 2011
p120 Catenin (p120(ctn)) regulates cadherin stability, and thus facilitates strong cell-cell adhesion. Previously, we demonstrated that Gα(12) interacts with p120(ctn). In the present study, we have delineated a region of p120(ctn) that binds to Gα(12).
View Article and Find Full Text PDFThe chemokine (C-C motif) receptor 2B (CCR2B) is one of the two isoforms of the receptor for monocyte chemoattractant protein-1 (CCL2), the major chemoattractant for monocytes, involved in an array of chronic inflammatory diseases. Employing the yeast two-hybrid system, we identified the actin-binding protein filamin A (FLNa) as a protein that associates with the carboxyl-terminal tail of CCR2B. Co-immunoprecipitation experiments and in vitro pull down assays demonstrated that FLNa binds constitutively to CCR2B.
View Article and Find Full Text PDFThe G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells produced a significant reduction of the extracellular signal-regulated kinase (ERK) response to CCL2.
View Article and Find Full Text PDFMetabolically unstable proteins are involved in a multitude of regulatory networks, including those that control cell signaling, the cell cycle and in many responses to physiological stress. In the present study, we have determined the stability and characterized the degradation process of some members of the G(q) class of heterotrimeric G proteins. Pulse-chase experiments in HEK293 cells indicated a rapid turnover of endogenously expressed Galpha(q) and overexpressed Galpha(q) and Galpha(16) subunits.
View Article and Find Full Text PDFThe catenin p120 (p120ctn) is an armadillo repeat domain protein that binds to cadherins and has been shown to facilitate strong cell-cell adhesion. We have investigated a possible link between heterotrimeric G proteins and p120ctn, and found that both Galpha12 and Galpha13 can completely and selectively abrogate the p120ctn-induced branching phenotype in different cell types. Consistent with these observations, the expression of Galpha12 or Galpha13 compensates for the reduction of Rho activity induced by p120ctn.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) initiate diverse down-stream signaling events in response to ligand stimulation, as rapid activation of the extracellular signal-regulated kinase ERK1 and ERK2. The chemokine monocyte chemoattractant protein-1 (MCP-1) is the agonist for several chemokine receptors that belong to the GPCR superfamily, CCR2 being the most important. Stimulation of mitogen-activated protein kinases (MAPKs) by MCP-1 has been implicated in integrin activation and chemotaxis, but the molecular pathways down-stream of the receptors remain unclear.
View Article and Find Full Text PDF