Publications by authors named "Anna M Anastasi"

The uneven worldwide vaccination coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emergence of variants escaping immunity call for broadly effective and easily deployable therapeutic agents. We have previously described the human single-chain scFv76 antibody, which recognizes SARS-CoV-2 Alpha, Beta, Gamma and Delta variants. We now show that scFv76 also neutralizes the infectivity and fusogenic activity of the Omicron BA.

View Article and Find Full Text PDF

As of December 2021, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global emergency, and novel therapeutics are urgently needed. Here we describe human single-chain variable fragment (scFv) antibodies (76clAbs) that block an epitope of the SARS-CoV-2 spike protein essential for ACE2-mediated entry into cells. 76clAbs neutralize the Delta variant and other variants being monitored (VBMs) and inhibit spike-mediated pulmonary cell-cell fusion, a critical feature of COVID-19 pathology.

View Article and Find Full Text PDF

Antitumor hydroxamates SAHA and Dacinostat have been linked to cetuximab and trastuzumab through a non-cleavable linker based on the p-mercaptobenzyl alcohol structure. These antibody drug conjugates (ADCs) were able to inhibit HDAC in several tumour cell lines. The cetuximab based ADCs block human lung adenocarcinoma cell proliferation, demonstrating that bioconjugation with antibodies is a suitable approach for targeted therapy based on hydroxamic acid-containing drugs.

View Article and Find Full Text PDF

Targeted therapy using monoclonal antibodies conjugated to toxins is gaining space in the treatment of cancer. Here, we report the anti-tumor effect of a new antibody drug conjugate (ADC) delivering a HDAC inhibitor to ErbB2+ solid tumors. Trastuzumab was partially reduced with tris [2-carboxyethyl] phosphine (TCEP) and conjugated to ST7464AA1, the active form of the prodrug HDAC inhibitor ST7612AA1, through a maleimide-thiol linker to obtain the Antibody Drug Conjugate (ADC) ST8176AA1.

View Article and Find Full Text PDF

Tenatumomab is an anti-tenascin murine monoclonal antibody previously used in clinical trials for delivering radionuclides to tumors by both pre-targeting (biotinylated Tenatumomab within PAGRIT) and direct Iodine labeling approaches. Here we present the synthesis and in vitro characterization of three Tenatumomab conjugates to bifunctional chelating agents (NHS-DOTA, NCS-DOTA and NCS-DTPA). Results indicate ST8198AA1 (Tenatumomab-DOTAMA, derived by conjugation of NHS-DOTA), as the most promising candidate in terms of conjugation rate and yield, stability, antigen immunoreactivity and affinity.

View Article and Find Full Text PDF

We describe here two novel antibody-drug conjugates loaded with the HDAC inhibitor ST7612AA1 (IC equal to 0.07 μM on NCI-H460 cells), a thiol-based molecule with a moderate toxicity . Two payloads were prepared using cleavable and non-cleavable linkers.

View Article and Find Full Text PDF

The oxidized version of Avidin, known as AvidinOX, was previously shown to link to tissue proteins upon injection or nebulization, thus becoming a stable receptor for biotinylated therapeutics. AvidinOX is currently under clinical investigation to target radioactive biotin to inoperable tumor lesions (ClinicalTrials.gov NCT02053324).

View Article and Find Full Text PDF

For locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC), the current clinical use of Cetuximab in chemo/radiotherapy protocols is often associated to severe systemic toxicity. Here we report in vitro data in human FaDu pharynx SCC cells, showing that inactive concentrations of biotinylated Cetuximab (bCet) become active upon anchorage to AvidinOX on the surface of tumor cells. AvidinOX-anchored bCet induces apoptosis and DNA damage as well as specific inhibition of signaling, degradation and abrogation of nuclear translocation of EGFR.

View Article and Find Full Text PDF
Article Synopsis
  • Lung cancer treatments could be improved using aerosol therapies, but there's a challenge with rapid clearance of drugs from the lungs and undesired systemic effects.* -
  • Researchers found that nebulized AvidinOX can capture biotinylated drugs, significantly enhancing the effectiveness of Cetuximab for treating advanced human lung cancer in mice using much lower doses.* -
  • The therapy showed promising results by blocking crucial signaling pathways in cancer cells, and with good tolerability and available materials, it could quickly move to clinical use.*
View Article and Find Full Text PDF

Generation of human recombinant antibody libraries displayed on the surface of the filamentous phage and selection of specific antibodies against desirable targets allows production of fully human antibodies usable for repeated administration in humans. Various lymphoid tissues from immunized donors, such as lymph nodes or peripheral blood lymphocytes from individuals with tumor or lymphocytes infiltrating tumor masses may serve as a source of specific anti-tumor antibody repertoire for generation of tumor-focused phage display libraries. In the case of lack of tumor-associated antigens in the purified form, high affinity anti-tumor antibodies can be isolated through library panning on whole cells expressing these antigens.

View Article and Find Full Text PDF

We recently reported that the oxidized avidin, named AvidinOX®, resides for weeks within injected tissues as a consequence of the formation of Schiff's bases between its aldehyde groups and tissue protein amino groups. We also showed, in a mouse pre-clinical model, the usefulness of AvidinOX for the delivery of radiolabeled biotin to inoperable tumors. Taking into account that AvidinOX is the first oxidized glycoprotein known to chemically link to injected tissues, we tested in the mouse a panel of additional oxidized glycoproteins, with the aim of investigating the phenomenon.

View Article and Find Full Text PDF

We recently described an oxidized avidin variant, named AvidinOX(®) , which is a product that chemically links to tissue proteins while maintaining the capacity to uptake intravenously administered biotin. Such product proved to be successful in targeting radionuclide therapy in a mouse model of inoperable breast cancer. Here, we show that the uptake of a single or multiple doses of biotin (up to five times), by the tissue-bound AvidinOX(®) , is stable for 2 weeks.

View Article and Find Full Text PDF

Hen egg white avidin is increasingly used in the clinic as part of multifactor treatments such as pretargeted radionuclide therapy of cancer or as an antidote of biotinylated drugs. Taking into account that naturally occurring human antiavidin antibodies (HAVA) are common in humans, the present work investigates avidin immunogenicity as part of risk/benefit evaluations. Sera from 139 oncology patients naive to avidin were confirmed to exhibit HAVA with lognormally distributed titers.

View Article and Find Full Text PDF
Article Synopsis
  • Modified avidin, created through ligand-assisted sodium periodate oxidation, retains its ability to bind biotin while enhancing its pharmacokinetics and immunological properties compared to native avidin.
  • The oxidation process protects its biotin-binding sites and results in aldehyde groups that extend the half-life of the modified avidin in tissue from 2 hours to 2 weeks.
  • In vitro and in vivo studies show that oxidized avidin maintains its biotin binding capability, making it a potential candidate for targeting biotinylated drugs in diseased tissues.
View Article and Find Full Text PDF

Background: There is much evidence that tumor cells elicit a humoral immune response in patients. In most cases, the presence of antibodies in peripheral blood is detected only in small proportion of patients with tumors overexpressing the corresponding antigen. In the present study, we analyzed the significance of local humoral response provided by tumor-infiltrating lymphocytes in breast cancer patients.

View Article and Find Full Text PDF

ST2146biot is a biotinylated anti-tenascin monoclonal antibody (mAb) to be used for Pretargeted Antibody Guided Radioimmunotherapy (PAGRIT) of solid tumors. In vivo biodistribution studies of (125)I-labeled ST2146biot were done in nude mice transplanted with human HT-29 colon carcinoma and/or human U-118MG glioblastoma cells characterized for low and high tenascin expression, respectively. In vitro results show that ST2146 retains immunoreactivity upon biotinylation, in contrast to other anti-tenascin mAbs.

View Article and Find Full Text PDF

Background: CEA is a tumor-associated antigen abundantly expressed on several cancer types, including those naturally refractory to chemotherapy. The selection and characterization of human anti-CEA single-chain antibody fragments (scFv) is a first step toward the construction of new anticancer monoclonal antibodies designed for optimal blood clearance and tumor penetration.

Methods: The human MA39 scFv, selected for its ability to recognize a CEA epitope expressed on human colon carcinomas, was first isolated from a large semi-synthetic ETH-2 antibody phage library, panned on human purified CEA protein.

View Article and Find Full Text PDF

Using phage display technology, a 22-mer peptide was selected as a ligand with unique specificity for the murine monoclonal ST2146 antibody that recognizes the EGF repeats region of the human tumor-associated antigen tenascin-C. This peptide, synthesized in an 8-branched form to enhance its binding properties, is useful in replacing the native antigen in the affinity and immunoreactivity characterization of the ST2146 antibody and its biotinylated derivatives. Affinity resins, prepared by immobilizing the mimotope or its shorter 10-mer binding unit on a chromatographic support, were able to capture ST2146 directly from the hybridoma supernatant, with antibody recovery and host cell protein (HCP) reduction similar to or better than protein A sorbent, a purity degree exceeding 95%, and full recovery of antibody activity.

View Article and Find Full Text PDF

Purpose: In the pretargeted antibody-guided radioimmunotherapy (PAGRIT) system, the combined use of two different antibodies directed against the same tumor antigen could represent a valid approach for improving tumor targeting and therapeutic efficacy. We developed a novel monoclonal antitenascin antibody, ST2485, and studied its biochemical and functional properties by in vitro and in vivo assays. We then investigated the first of the three-step therapy combining ST2485 with another antitenascin antibody, ST2146, previously described, to increase accumulation of biotinylated antibodies at the tumor site.

View Article and Find Full Text PDF