Publications by authors named "Anna Lutz"

Joining structural components with mechanical fasteners is common in many engineering applications across all industries. This study investigates combining additive manufactured inserts with sandwich composites consisting of aluminum honeycomb cores with carbon fiber reinforced facesheets. The combination of these components offers an integrated, lightweight solution when mechanically fastening sandwich composite components using bolted joints.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma and constitutes a highly heterogenous disease. Recent comprehensive genomic profiling revealed the identity of numerous molecularly defined DLBCL subtypes, including a cluster which is characterized by recurrent aberrations in MYD88, CD79B, and BCL2, as well as various lesions promoting a block in plasma cell differentiation, including PRDM1, TBL1XR1, and SPIB. Here, we generated a series of autochthonous mouse models to mimic this DLBCL cluster and specifically focused on the impact of Cd79b mutations in this setting.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional NSAIDs can have side effects by disrupting the production of beneficial compounds, but new multi-target inhibitors like diflapolin offer potential improved efficacy and safety despite challenges with solubility and bioavailability.
  • * Researchers have designed new derivatives using thiazolopyridines to enhance solubility and target specific enzymes; one such derivative effectively inhibits lipid mediators while also reducing thromboxane production, suggesting a promising strategy for broadening treatment applications.
View Article and Find Full Text PDF
Article Synopsis
  • Particles formed in the atmosphere through nucleation contribute about 50% of cloud condensation nuclei, but their growth is often restricted by available organic vapors.
  • Identifying these organic vapors and their origins is crucial for accurately simulating aerosol-cloud interactions, which significantly impact climate change.
  • New molecular-level observations indicate that the volatility of these vapors is adequate to explain the growth of atmospheric nanoparticles, marking a significant advancement in understanding particle growth in the atmosphere.
View Article and Find Full Text PDF

Macrophage-derived cytokines largely influence the behavior of hepatocytes during an inflammatory response. We previously reported that both TNFα and IL-1β, which are released by macrophages upon LPS stimulation, affect Fas ligand (FasL)-induced apoptotic signaling. Whereas TNFα preincubation leads to elevated levels of caspase-3 activity and cell death, pretreatment with IL-1β induces increased caspase-3 activity but keeps cells alive.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the complex nature of atmospheric organic aerosol (OA) and identifies sources of uncertainty regarding its origins and environmental effects.* -
  • Approximately 50% of summer fine OA in Centreville, AL, a forested area influenced by pollution, comes from secondary organic aerosol (SOA) created by the oxidation of monoterpenes.* -
  • Findings highlight the significant impact of nitrogen oxides on monoterpene SOA production and emphasize the need to lower anthropogenic emissions, especially as biogenic emissions are expected to rise with climate change.*
View Article and Find Full Text PDF

Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively.

View Article and Find Full Text PDF

Sustained inflammation may increase the susceptibility of hepatocytes to apoptotic cell death and therefore exacerbate liver damage. Here we report that the pro-inflammatory cytokine IL-1β sensitizes primary murine hepatocytes to Fas ligand (FasL)-induced caspase-3/-7 activity. This process was dependent on JNK1/2 and the BH3-only proteins Bim and Bid.

View Article and Find Full Text PDF

The influence of water and radicals on SOAs produced by β-pinene ozonolysis was investigated at 298 and 288 K using a laminar flow reactor. A volatility tandem differential mobility analyzer (VTDMA) was used to measure the evaporation of the SOA, enabling the parametrization of its volatility properties. The parameters extracted included the temperature at which 50% of the aerosol had evaporated (T(VFR0.

View Article and Find Full Text PDF

This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways.

View Article and Find Full Text PDF

Limonene has a strong tendency to form secondary organic aerosol (SOA) in the atmosphere and in indoor environments. Initial oxidation occurs mainly via ozone or OH radical chemistry. We studied the effect of O(3) concentrations with or without a OH radical scavenger (2-butanol) on the SOA mass and thermal characteristics using the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures and a volatility tandem differential mobility analyzer.

View Article and Find Full Text PDF
Article Synopsis
  • TNFα does not cause cell death in isolated liver cells but can sensitize these cells to apoptosis (cell death) in the presence of inflammation-related factors like Fas ligand and transcriptional inhibitors like actinomycin D.
  • The study highlights the role of reactive oxygen species (ROS) in activating JNK, a protein that then triggers a specific mitochondrial pathway leading to cell death.
  • A mathematical model was created to illustrate the complex interactions between various signaling pathways (TNFα, FasL, NF-κB, and ROS), providing deeper understanding of how these pathways influence liver cell apoptosis.
View Article and Find Full Text PDF

Objectives: Many complications in the perioperative interval are associated with genetic susceptibilities that may be unknown in advance of surgery and anesthesia, including drug toxicity and inefficacy, thrombosis, prolonged neuromuscular blockade, organ failure and sepsis. The aims of this study were to design and validate the first genetic testing platform and panel designed for use in perioperative care, to establish allele frequencies in a target population, and to determine the number of mutant alleles per patient undergoing surgery. DESIGN/SETTING/PARTICIPANTS AND METHODS: One hundred fifty patients at Marshfield Clinic, Marshfield, Wisconsin, 100 patients at the Medical College of Wisconsin Zablocki Veteran's Administration Medical Center, Milwaukee, Wisconsin, and 200 patients at the University of Wisconsin Hospitals and Clinics, Madison, Wisconsin undergoing surgery and anesthesia were tested for 48 polymorphisms in 22 genes including ABC, BChE, ACE, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, beta2AR, TPMT, F2, F5, F7, MTHFR, TNFalpha, TNFbeta, CCR5, ApoE, HBB, MYH7, ABO and Gender (PRKY, PFKFB1).

View Article and Find Full Text PDF