Accurate bacterial identification is essential for determining the causative agent of an infection, thus facilitating appropriate treatment and management strategies in both human and animal health contexts. Some species in the Vibrio genus are recognized pathogens, associated with a variety of infections. However, identification of these bacteria is oftentimes controversial.
View Article and Find Full Text PDFFrom marine to terrestrial environments, Pseudomonas spp. exhibit a remarkable ability not only to adapt but also thrive even amidst adverse conditions. This fact turns Pseudomonas spp.
View Article and Find Full Text PDFColistin resistance poses a major therapeutic challenge and resistant strains have now been reported worldwide. However, the occurrence of such bacteria in aquatic environments is considerably less understood. This study aimed to isolate and characterize colistin-resistant strains from water and plastic litter collected in an urban recreational estuary.
View Article and Find Full Text PDFPlastics have quickly become one of the major pollutants in aquatic environments worldwide and solving the plastic pollution crisis is considered a central goal of modern society. In this study, 10 different plastic samples, including high- and low-density polyethylene and polypropylene, were collected from a deeply polluted urban estuary in Brazil. By employing different isolation and analysis approaches to investigate plastic-associated bacteria, a predominance of potentially pathogenic bacteria such as Acinetobacter, Aeromonas, and Vibrio was observed throughout all plastic samples.
View Article and Find Full Text PDFStaphylococci are one of the most common causes of biofilm-related infections. Such infections are hard to treat with conventional antimicrobials, which often lead to bacterial resistance, thus being associated with higher mortality rates while imposing a heavy economic burden on the healthcare system. Investigating antibiofilm strategies is an area of interest in the fight against biofilm-associated infections.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) has become one of the greatest challenges worldwide, hampering the treatment of a plethora of infections. Indeed, the AMR crisis poses a threat to the achievement of the United Nations' Sustainable Development Goals and, due to its multisectoral character, a holistic approach is needed to tackle this issue. Thus, the investigation of environments beyond the clinic is of utmost importance.
View Article and Find Full Text PDFThe genus comprises Gram-negative bacilli widely distributed in aquatic habitats that can also be found in the terrestrial environment and in close association with humans and animals. spp. are particularly versatile bacteria, with high genomic plasticity and notable capacity to adapt to different environments and extreme conditions.
View Article and Find Full Text PDFThe sponge-microorganism partnership is one of the most successful symbiotic associations exploited from a biotechnological perspective. During the last thirty years, sponge-associated bacteria have been increasingly harnessed for bioactive molecules, notably antimicrobials and cytotoxic compounds. Unfortunately, there are gaps in sponge microbial biotechnology, with a multitude of applications being understudied or ignored.
View Article and Find Full Text PDFInt J Biol Macromol
November 2021
Active heterotrophic metabolism is a critical metabolic role performed by sponge-associated microorganisms, but little is known about their capacity to metabolize marine polysaccharides (MPs). Here, we investigated the genome of the sponge-derived Pseudoalteromonas sp. strain PA2MD11 focusing on its macroalgal carbohydrate-degrading potential.
View Article and Find Full Text PDFStaphylococcus aureus and Staphylococcus epidermidis are among the most important bacterial species responsible for biofilm formation on indwelling medical devices, including orthopaedic implants. The increasing resistance to antimicrobials, partly attributed to the ability to form biofilms, is a challenge for the development of new antimicrobial agents. In this study, the cell-free supernatant obtained from sponge-associated Enterobacter strain 84.
View Article and Find Full Text PDF