Correction for 'An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles' by Marco Bortolus et al., Phys. Chem.
View Article and Find Full Text PDFTrichogin GA IV is a short-length (10-amino acid long), mostly hydrophobic, peptaibiotic with an N-terminal fatty acyl chain and a C-terminal 1,2-amino alcohol. A cardinal role of the terminal moieties in the cytotoxic activity of trichogin has been recently found. Previously, peptide orientation and dynamics of trichogin analogs in the membrane were studied using methyl ester derivatives.
View Article and Find Full Text PDFPeptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded α-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity.
View Article and Find Full Text PDFAmpullosporin A is a medium-length (14-amino acid long) hydrophobic peptide of the peptaibol family. In this work, electron paramagnetic resonance and circular dichroism spectroscopies were applied to study the interaction of synthetic ampullosporin A and three spin-labeled analogs with small unilamellar vesicles and bicelles. Zwitterionic vesicles were used to investigate the conformation and the penetration depth of the peptide at room temperature.
View Article and Find Full Text PDFBicelles are model membrane systems that can be macroscopically oriented in a magnetic field at physiological temperature. The macroscopic orientation of bicelles allows to detect, by means of magnetic resonance spectroscopies, small changes in the order of the bilayer caused by solutes interacting with the membrane. These changes would be hardly detectable in isotropic systems such as vesicles or micelles.
View Article and Find Full Text PDFHerein, we report for the first time that nematic liquid-crystalline environments drive the reversible self-aggregation of an enantiopure β-pentapeptide into oligomers with a well-defined structure. The peptide contains four (1S,2S)-2-aminocyclopentane carboxylic acid (ACPC) residues and the paramagnetic β-amino acid (3R,4R)-4-amino-1-oxyl-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid (POAC). The structure of the oligomers was investigated by electron paramagnetic resonance (EPR) spectroscopy, which allowed us to obtain the intermonomer distance distribution in the aggregates as a function of peptide concentration in two nematic liquid crystals, E7 and ZLI-4792.
View Article and Find Full Text PDFWe describe the challenging solid-phase synthesis of the medium-length (14 amino-acid residues) peptaibiotic ampullosporin A, originally extracted from the fungus Sepedonium ampullosporum, and an analog doubly spin labeled (at positions 3 and 13) with the stable nitroxyl free-radical 4-amino-1-oxyl-2,2,6,6-tetramethylpiperidine-4-carboxylic acid (TOAC). The results of a circular dichrosim investigation in methanol strongly support the view that both peptides are essentially right-handed helical, in particular endowed with a large population of α-helical conformers. We also observed a significant quenching effect from the TOAC(3) nitroxyl radical on the fluorescence of Trp(1), compatible with that expected when both residues are closely located on the same helix segment.
View Article and Find Full Text PDFAlamethicin is a 19-amino-acid residue hydrophobic peptide of the peptaibol family that has been the object of numerous studies for its ability to produce voltage-dependent ion channels in membranes. In this work, for the first time electron paramagnetic resonance spectroscopy was applied to study the interaction of alamethicin with oriented bicelles. We highlighted the effects of increasing peptide concentrations on both the peptide and the membrane in identical conditions, by adopting a twofold spin labeling approach, placing a nitroxide moiety either on the peptide or on the phospholipids.
View Article and Find Full Text PDFThe polymer framework of water-swollen copolymers of N,N-dimethylacrylamide, acrylamido-2-methylpropanesulfonic acid, and ethylenedimethacrylate (nominal cross-linking degrees of 4, 8, and 20 mol %) is composed of highly expanded domains, with "pores" not less than 6 nm in diameter. When the 4% cross-linked copolymer (DAE 26-4) is swollen with a 10(-4) M solution of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) in water, MeOH, EtOH, or nBuOH, the molecules of the paramagnetic probe rotate rapidly (τ<1000 ps) and as fast as in the bulk liquid in the case of water. The swelling degree of DAE 26-4 is related to the Hansen solubility parameters of a number of liquids, including linear alcohols up to n-octanol.
View Article and Find Full Text PDFTwo hypercross-linked resins stemming from a gel-type poly-chloromethylated styrene-divinylbenzene resin (GT) in beaded form are investigated with a combination of spectroscopic techniques (EPR and time-domain (TD)-NMR spectroscopy) to evaluate their use as supports for the development of operationally flexible heterogeneous metal catalysts, suitable to be employed in liquid and gas phase. The first resin (HGT) is the direct product of the hypercross-linking reaction, whereas the second one (HGS) is the sulphonated analogue of HGT obtained by exchanging approximately 3 wt % of the chloromethyl groups with sulphonic groups. HGT and HGS absorb both polar and apolar solvents in the permanent nanoporosity created by the hypercross-linking, and NMR data highlight that the pore size is not affected by the different properties of the investigated liquid media.
View Article and Find Full Text PDFWe report a combined theoretical and experimental study on the single-molecule interaction of fullerenes with phospholipid membranes. We studied pristine C(60) (1) and two N-substituted fulleropyrrolidines (2 and 3), one of which (3) bore a paramagnetic nitroxide group. Theoretical predictions of fullerene distribution and permeability across lipid bilayers were combined with electron paramagnetic resonance (EPR) experiments in aligned DMPC/DHPC bicelles containing the paramagnetic fulleropyrrolidine 3 or either one of the diamagnetic fullerenes together with spin-labeled lipids.
View Article and Find Full Text PDFCamptothecin (CPT) derivatives are clinically effective poisons of DNA topoisomerase I (Top1) able to form a ternary complex with the Top1-DNA complex. The aim of this investigation was to examine the dynamic aspects of the ternary complex formation by means of site-directed spin labeling electron paramagnetic resonance (SDSL-EPR). Two semisynthetic CPT derivatives bearing the paramagnetic moiety were synthesized, and their biological activity was tested.
View Article and Find Full Text PDFHuman α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein.
View Article and Find Full Text PDFWe have investigated the production of reactive oxygen species (ROS) by Complex I in isolated open bovine heart submitochondrial membrane fragments during forward electron transfer in presence of NADH, by means of the probe 2',7'-Dichlorodihydrofluorescein diacetate. ROS production by Complex I is strictly related to its inhibited state. Our results indicate that different Complex I inhibitors can be grouped into two classes: Class A inhibitors (Rotenone, Piericidin A and Rolliniastatin 1 and 2) increase ROS production; Class B inhibitors (Stigmatellin, Mucidin, Capsaicin and Coenzyme Q(2)) prevent ROS production also in the presence of Class A inhibitors.
View Article and Find Full Text PDFThe region 35-43 of human alpha-Synuclein bound to small unilamellar lipid vesicles and to sodium dodecyl sulfate micelles has been investigated by site-directed spin labeling and electron paramagnetic resonance spectroscopy. The distance distributions obtained from spectral fitting have been analyzed on the basis of the allowed rotamers of the spin-label side-chain. Very similar results have been obtained in the two environments: an unbroken helical structure of the investigated region can be ruled out.
View Article and Find Full Text PDFHigh-frequency electron paramagnetic resonance (EPR) and X-band electron-nuclear double resonance (ENDOR) spectroscopies were used to investigate the effect of gamma-irradiation on single crystals of L-tyrosine hydrochloride at room temperature. The oxidation product is the tyrosyl radical formed by hydrogen abstraction from the phenolic group; interestingly, on freshly irradiated crystals, two tyrosyl radicals were identified, characterized by slightly different magnetic parameters. In particular, one of the two radicals, with a gxx value of 2.
View Article and Find Full Text PDFThe catalytic sites of beef heart mitochondrial F1-ATPase were studied by electron spin echo envelope modulation (ESEEM) spectroscopy, using Mn(II) as a paramagnetic probe, which replaces the naturally occurring Mg(II), maintaining the enzyme catalytic activity. F1-ATPase was purified from beef heart mitochondria. A protein still containing three endogenous nucleotides, named MF1(1,2), is obtained under milder conditions, whereas a harsher treatment gives a fully depleted F1, named MF1(0,0).
View Article and Find Full Text PDFThe low-lying photoexcited triplet state of a series of fullerene C(60) adducts has been studied by high-field TREPR (time-resolved EPR) spectroscopy in a partially oriented phase. The fullerenes adopt a biaxial alignment, driven by the substituents, that has allowed to fully determine the ZFS and g tensors, i.e.
View Article and Find Full Text PDFChemical oxidation of the chlorosomes from Chloroflexus aurantiacus and Chlorobium tepidum green bacteria produces bacteriochlorophyll radicals, which are characterized by an anomalously narrow EPR signal compared to in vitro monomeric BChl c (.+) [Van Noort PI, Zhu Y, LoBrutto R and Blankenship RE (1997) Biophys J 72: 316-325]. We have performed oxidant concentration and temperature-dependent X-band EPR measurements in order to elucidate the line narrowing mechanism.
View Article and Find Full Text PDFThe photoexcited triplet states of 4,4'-dipentoxy-2,2'-dithiophene (4-T2), 3,3'-dipentoxy-2,2'-dithiophene (3-T2), and 4,4'''-dipentoxy-2,2':5',2'':5'',2'''-tetrathiophene (4-T4) have been investigated by time-resolved electron paramagnetic resonance in glassy toluene and in a frozen oriented liquid crystal, which provides a partially ordered medium. The preferential orientation of the rod-like 4-T2 and 4-T4 is compared to that of the disk-like 3-T2. The use of an oriented matrix coupled to simple semiempirical calculations allowed us to determine the orientation of the principal axes of the fine interaction with respect to the molecular axes.
View Article and Find Full Text PDFTwo oligothiophenes, 4,4'-dipentoxy-2,2'-dithiophene and 4,4"-dipentoxy-2,2':5',2":5",2' ''-tetrathiophene, have been included in the nanochannels of the autoassembling host TPP (tris-o-phenylenedioxycyclotriphosphazene). The effect of the confinement on the structure and properties of the two dyes, as conformational arrangements, dynamics, and photophysical behavior, was addressed by the combination of high spinning speed solid-state NMR and time-resolved EPR spectroscopy. We compared the conformations of the dyes in their ground and photoexcited triplet states and described in detail the dynamics of the supramolecular adducts from 4 K to room temperature.
View Article and Find Full Text PDFThe high-affinity metal-binding site of isolated F(1)-ATPase from beef heart mitochondria was studied by high-field (HF) continuous wave electron paramagnetic resonance (CW-EPR) and pulsed EPR spectroscopy, using Mn(II) as a paramagnetic probe. The protein F(1) was fully depleted of endogenous Mg(II) and nucleotides [stripped F(1) or MF1(0,0)] and loaded with stoichiometric Mn(II) and stoichiometric or excess amounts of ADP or adenosine 5'-(beta,gamma-imido)-triphosphate (AMPPNP). Mn(II) and nucleotides were added to MF1(0,0) either subsequently or together as preformed complexes.
View Article and Find Full Text PDFHigh-frequency, high-field EPR at 330 GHz was used to study the photo-oxidized primary donor of photosystem I (P(700)(+)(*)) in wild-type and mutant forms of photosystem I in the green alga Chlamydomonas reinhardtii. The main focus was the substitution of the axial ligand of the chlorophyll a and chlorophyll a' molecules that form the P(700) heterodimer. Specifically, we examined PsaA-H676Q, in which the histidine axial ligand of the A-side chlorophyll a' (P(A)) is replaced with glutamine, and PsaB-H656Q, with a similar replacement of the axial ligand of the B-side chlorophyll a (P(B)), as well as the double mutant (PsaA-H676Q/PsaB-H656Q), in which both axial ligands were replaced.
View Article and Find Full Text PDF