Publications by authors named "Anna Lenard"

During development, hematopoietic stem cells (HSCs) emerge from aortic endothelial cells (ECs) through an intermediate stage called hemogenic endothelium by a process known as endothelial-to-hematopoietic transition (EHT). While Notch signaling, including its upstream regulator Vegf, is known to regulate this process, the precise molecular control and temporal specificity of Notch activity remain unclear. Here, we identify the zebrafish transcriptional regulator evi1 as critically required for Notch-mediated EHT In vivo live imaging studies indicate that evi1 suppression impairs EC progression to hematopoietic fate and therefore HSC emergence.

View Article and Find Full Text PDF

Vascular networks are formed and maintained through a multitude of angiogenic processes, such as sprouting, anastomosis and pruning. Only recently has it become possible to study the behavior of the endothelial cells that contribute to these networks at a single-cell level in vivo This Review summarizes what is known about endothelial cell behavior during developmental angiogenesis, focusing on the morphogenetic changes that these cells undergo.

View Article and Find Full Text PDF

The vasculature of the zebrafish trunk is composed of tubes with different cellular architectures. Unicellular tubes form their lumen through membrane invagination and transcellular cell hollowing, whereas multicellular vessels become lumenized through a chord hollowing process. Endothelial cell proliferation is essential for the subsequent growth and maturation of the blood vessels.

View Article and Find Full Text PDF

During embryonic development, vascular networks remodel to meet the increasing demand of growing tissues for oxygen and nutrients. This is achieved by the pruning of redundant blood vessel segments, which then allows more efficient blood flow patterns. Because of the lack of an in vivo system suitable for high-resolution live imaging, the dynamics of the pruning process have not been described in detail.

View Article and Find Full Text PDF

Protein-protein interactions are crucial for cellular homeostasis and play important roles in the dynamic execution of biological processes. While antibodies represent a well-established tool to study protein interactions of extracellular domains and secreted proteins, as well as in fixed and permeabilized cells, they usually cannot be functionally expressed in the cytoplasm of living cells. Non-immunoglobulin protein-binding scaffolds have been identified that also function intracellularly and are now being engineered for synthetic biology applications.

View Article and Find Full Text PDF

Organ morphogenesis requires the coordination of cell behaviors. Here, we have analyzed dynamic endothelial cell behaviors underlying sprouting angiogenesis in vivo. Two different mechanisms contribute to sprout outgrowth: tip cells show strong migratory behavior, whereas extension of the stalk is dependent upon cell elongation.

View Article and Find Full Text PDF

Angiogenesis contributes to the development of numerous disorders. Even though fibroblast growth factors (FGFs) were discovered as mediators of angiogenesis more than 30 years ago, their role in developmental angiogenesis still remains elusive. We use a recently described chemical probe, SSR128129E (SSR), that selectively inhibits the action of multiple FGF receptors (FGFRs), in combination with the zebrafish model to examine the role of FGF signaling in vascular development.

View Article and Find Full Text PDF

In this issue of Developmental Cell, Weavers and Skaer (2013) show that interplay between two opposing forces generated by tip cell attachment to muscles and migration of kink cells allows for the formation of the looped shape and positioning of renal tubules within the body of a fly larva.

View Article and Find Full Text PDF

After the initial formation of a highly branched vascular plexus, blood vessel pruning generates a hierarchically structured network with improved flow characteristics. We report here on the cellular events that occur during the pruning of a defined blood vessel in the eye of developing zebrafish embryos. Time-lapse imaging reveals that the connection of a new blood vessel sprout with a previously perfused multicellular endothelial tube leads to the formation of a branched, Y-shaped structure.

View Article and Find Full Text PDF

Organ formation and growth requires cells to organize into properly patterned three-dimensional architectures. Network formation within the vertebrate vascular system is driven by fusion events between nascent sprouts or between sprouts and pre-existing blood vessels. Here, we describe the cellular activities that occur during blood vessel anastomosis in the cranial vasculature of the zebrafish embryo.

View Article and Find Full Text PDF

Although many of the cellular and molecular mechanisms of angiogenesis have been intensely studied [1], little is known about the processes that underlie vascular anastomosis. We have generated transgenic fish lines expressing an EGFP-tagged version of the junctional protein zona occludens 1 (ZO1) to visualize individual cell behaviors that occur during vessel fusion and lumen formation in vivo. These life observations show that endothelial cells (ECs) use two distinct morphogenetic mechanisms, cell membrane invagination and cord hollowing to generate different types of vascular tubes.

View Article and Find Full Text PDF

To identify molecular effects of the antineoplastic agent protein kinase C inhibitor 412 (PKC412) (midostaurin), we applied gene expression profiling in zebrafish using whole-genome microarrays. Behavioral, developmental, and physiological effects were investigated in order to analyze for correlations between altered gene expression profiles with effects on development and physiology. Zebrafish blastula-stage embryos were exposed for 6 days postfertilization to nominal levels of 2 and 40 μg/l PKC412.

View Article and Find Full Text PDF

During embryonic development, the vertebrate vasculature is undergoing vast growth and remodeling. Blood vessels can be formed by a wide spectrum of different morphogenetic mechanisms, such as budding, cord hollowing, cell hollowing, cell wrapping and intussusception. Here, we describe the vascular morphogenesis that occurs in the early zebrafish embryo.

View Article and Find Full Text PDF