Publications by authors named "Anna Lena Hoheisel"

Rotator cuff tear is the most frequent tendon injury in the adult population. Despite current improvements in surgical techniques and the development of grafts, failure rates following tendon reconstruction remain high. New therapies, which aim to restore the topology and functionality of the interface between muscle, tendon and bone, are essentially required.

View Article and Find Full Text PDF

Acute and chronic rotator cuff tears remain challenging for therapy. A wide range of therapeutic approaches were developed but re-tears and postoperative complications occur regularly. Especially in elderly people, the natural regeneration processes are decelerated, and graft materials are often necessary to stabilize the tendon-to-bone attachment and to improve the healing process.

View Article and Find Full Text PDF

In orthopaedic medicine, connective tissues are often affected by traumatic or degenerative injuries, and surgical intervention is required. Rotator cuff tears are a common cause of shoulder pain and disability among adults. The development of graft materials for bridging the gap between tendon and bone after chronic rotator cuff tears is essentially required.

View Article and Find Full Text PDF

Biodegradable polymers such as polycaprolactone (PCL) are increasingly used for electrospinning substrates for tissue engineering. These materials offer great advantages such as biocompatibility and good mechanical properties. However, in order to be approved for human implantation they have to be sterilized.

View Article and Find Full Text PDF

Electrospun poly(ε-caprolactone) (PCL) fiber mats are modified using a chitosan grafted with PCL (CS-g-PCL), to improve the biological performance and to enable further modifications. The graft copolymer is immobilized by the crystallization of the PCL grafts on the PCL fiber surface as binding mechanism. In this way, the surface of the fibers is covered with chitosan bearing cationic amino groups, which allow adsorption of oppositely charged nanoparticulate drug-delivery systems.

View Article and Find Full Text PDF