The fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field.
View Article and Find Full Text PDFArginine, due to the guanidine moiety, increases peptides' hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging.
View Article and Find Full Text PDFHematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10).
View Article and Find Full Text PDFFurin is a human serine protease responsible for activating numerous physiologically relevant cell substrates and is also involved in the development of various pathological conditions, including inflammatory diseases, cancers, and viral and bacterial infections. Therefore, compounds with the ability to inhibit furin's proteolytic action are regarded as potential therapeutics. Here we took the combinatorial chemistry approach (library consisting of 2000 peptides) to obtain new, strong, and stable peptide furin inhibitors.
View Article and Find Full Text PDFInfections of spp. etiology are frequently treated with azole drugs. Among azoles, the most widely used in the clinical scenario remains fluconazole (FLC).
View Article and Find Full Text PDFHuman neurohormone vasopressin (AVP) is synthesized in overlapping regions in the hypothalamus. It is mainly known for its vasoconstricting abilities, and it is responsible for the regulation of plasma osmolality by maintaining fluid homeostasis. Over years, many attempts have been made to modify this hormone and find AVP analogues with different pharmacological profiles that could overcome its limitations.
View Article and Find Full Text PDFThe emergence and spread of multiple drug-resistant bacteria strains caused the development of new antibiotics to be one of the most important challenges of medicinal chemistry. Despite many efforts, the commercial availability of peptide-based antimicrobials is still limited. The presented study aims to explain that immobilized artificial membrane chromatography can support the characterization of antimicrobial peptides.
View Article and Find Full Text PDFCorrection for 'Stability of Cu(ii) complexes with FomA protein fragments containing two His residues in the peptide chain' by Monika Katarzyna Lesiów et al., Metallomics, 2019, 11, 1518-1531, DOI: 10.1039/C9MT00131J.
View Article and Find Full Text PDFMono- and dinuclear Cu(II) complexes with Ac-PTVHNEYH-NH (L1) and Ac-NHHTLND-NH (L2) peptides from FomA protein of Fusobacterium nucleatum were studied by potentiometry, spectroscopic methods (UV-Vis, CD, EPR) and MS technique. The dominant mononuclear complexes for L1 ligand are: CuHL (pH range 5.0-6.
View Article and Find Full Text PDFSeven conjugates composed of well-known fluoroquinolone antibacterial agents, ciprofloxacin (CIP) or levofloxacin (LVX), and a cell-penetrating peptide transportan 10 (TP10-NH) were synthesised. The drugs were covalently bound to the peptide via an amide bond, methylenecarbonyl moiety, or a disulfide bridge. Conjugation of fluoroquinolones to TP10-NH resulted in congeners demonstrating antifungal in vitro activity against human pathogenic yeasts of the genus (MICs in the 6.
View Article and Find Full Text PDFA gradual truncation of the primary structure of frog skin-derived Huia versabilis Bowman-Birk peptidic inhibitor (HV-BBI) resulted in 18-times stronger inhibitor of matriptase-1 (peptide 6, K = 8 nm) in comparison to the full-length HV-BBI (K = 155 nm). Analogous increase in the inhibitory activity in correlation with the peptide length reduction was not observed in case of other serine proteases, bovine trypsin (K = 151 nm for peptide 6 and K = 120 nm for HV-BBI) and plasmin (K = 120 nm for peptide 6 and 82 nm for HV-BBI). Weaker binding affinity to these enzymes emphasized an inhibitory specificity of peptide 6.
View Article and Find Full Text PDFRecent studies have shown that modified human lactoferrin 20-31 fragment, named HLopt2, possesses antibacterial and antifungal activity. Thus, we decided to synthesize and evaluate the biological activity of a series of conjugates based on this peptide and one of the antimicrobials with proven antibacterial (ciprofloxacin, CIP, and levofloxacin, LVX) or antifungal (fluconazole, FLC) activity. The drugs were covalently connected to the peptide via amide, methylenecarbonyl moieties, or a disulfide bridge.
View Article and Find Full Text PDFEight new peptide conjugates composed of modified bovine lactoferricin truncated analogues (LFcinB) and one of the three antimicrobials - ciprofloxacin (CIP), levofloxacin (LVX), and fluconazole (FLC) - were synthesized. Four different linkers were applied to connect a peptide and an antimicrobial agent. The FLC-containing peptidic conjugates were synthesized using the "click chemistry" method.
View Article and Find Full Text PDFMatriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, , may result in various forms of iron deficiency anemia.
View Article and Find Full Text PDFFusobacterium nucleatum is an anaerobic, Gram-negative bacteria linked to colon cancer. It is interesting to determine how metal ions interact with bacterial adhesin proteins. To this end, the coordination of ATDAAS-NH and MKKFL-NH fragments of Fusobacterium adhesin A (FadA) to copper(II) ions was studied by potentiometry, spectroscopic techniques (UV-Vis, CD, EPR and NMR) and the density functional theory (DFT) methods.
View Article and Find Full Text PDFThree chimera peptides composed of bovine lactoferrampin and the analogue of truncated human neutrophil peptide 1 were synthesized by the solid-phase method. In two compounds peptide chains were connected via isopeptide bond, whereas in the third one disulfide bridge served as a linker. All three chimeras displayed significantly higher antimicrobial activity than the constituent peptides as well as their equimolar mixtures.
View Article and Find Full Text PDFMatriptase-2 plays a pivotal role in keeping iron concentrations within a narrow physiological range in humans. The opportunity to reduce matriptase-2 proteolytic activity may open a novel possibility to treat iron overload diseases, such as hereditary hemochromatosis and thalassemia. Here, we present 23 new analogues of trypsin inhibitor SFTI-1 designed to inhibit human matriptase-2.
View Article and Find Full Text PDFA series of analogues of trypsin inhibitor SFTI-1 were designed and synthesized to monitor peptide splicing. In the middle part of the SFTI-1 analogues, which is released upon incubation with proteinase, the RGD sequence or an acceptor of fluorescence for FRET was introduced. The results of studies with trypsin confirmed that the designed analogues underwent peptide splicing.
View Article and Find Full Text PDFSunflower trypsin inhibitor (SFTI-1) is recognized as an attractive scaffold to designed potent inhibitors of various proteases. We have recently found that its analogues inhibit noncovalently both human and yeast 20S proteasomes. Here, a set of novel and more potent in vitro inhibitors is presented.
View Article and Find Full Text PDFN-substituted glycines constitute mimics of natural amino acids that are of great interest in the peptide-based drug development. Peptoids-oligo(N-substituted glycines) have been recently demonstrated to be highly active peptidomimetics in biological systems, resistant to proteolytic degradation. We developed a method of the deuterium labeling of peptidomimetics containing N-substituted glycine residues via H/D exchange of their α-carbon hydrogen atoms.
View Article and Find Full Text PDFSerine-proteinase-catalyzed peptide splicing was demonstrated in analogues of the trypsin inhibitor SFTI-1: both single peptides and two-peptide chains (C- and N-terminal peptide chains linked by a disulfide bridge). In the second series, peptide splicing with catalytic amount of proteinase was observed only when formation of acyl-enzyme intermediate was preceded by hydrolysis of the substrate Lys-Ser peptide bond. Here we demonstrate that with an equimolar amount of the proteinase, splicing occurs in all the two-peptide-chain analogues.
View Article and Find Full Text PDFA series of 17 new analogues of trypsin inhibitor SFTI-1 were designed and synthesized to obtain matriptase-2 inhibitors. A number of the modified bicyclic peptides displayed much higher affinity towards matriptase-2 than towards the highly homologous matriptase-1. Replacement of Lys5 by Arg in the wild-type SFTI-1 led to an 11-fold increase in the matriptase-2 inhibitory activity.
View Article and Find Full Text PDFRecently, we described a process of trypsin-assisted peptide splicing of analogs of trypsin inhibitor SFTI-1, that seems to be very similar to proteasome-catalyzed peptide splicing. Here, we show, for the first time, that a peptide-peptoid hybrid (peptomer) can also be spliced by trypsin. Incubation of a double sequence SFTI-1 analog, containing two peptoid monomers, with equimolar amount of trypsin leads to formation of monocyclic peptomer as the main product.
View Article and Find Full Text PDFProtease inhibitors of the Bowman-Birk (BBI) family are commonly found in plants and animals where they play a protective role against invading pathogens. Here, we report an atomic resolution (1Å) crystal structure of a peptide inhibitor isolated from a skin secretion of a Chinese bamboo odorous frog Huia versabilis (HV-BBI) in complex with trypsin. HV-BBI shares significant similarities in sequence with a previously described inhibitor from a diskless-fingered odorous frog Odorrana graham (ORB).
View Article and Find Full Text PDFStarting from the primary structure of sunflower trypsin inhibitor SFTI-1, we designed novel non-covalent inhibitors of human and yeast 20S proteasomes. Peptides with Arg residue in P1 position and two basic amino acid residues (Lys or/and Arg) in P2' and P3' positions strongly inhibited chymotrypsin-like and caspase-like activities, while trypsin-like activity was poorly modified. We found that some SFTI-1 analogues up-regulated exclusively the chymotrypsin-like activity of latent yeast 20S proteasome.
View Article and Find Full Text PDF