Background: Atypical teratoid rhabdoid tumors (ATRT) are incurable high-grade pediatric brain tumors. Despite intensive research efforts, the prognosis for ATRT patients under currently established treatment protocols is poor. While novel therapeutic strategies are urgently needed, the generation of molecular-driven treatment concepts is a challenge mainly due to the absence of actionable genetic alterations.
View Article and Find Full Text PDFMitophagy, the selective degradation of mitochondria by autophagy, affects defective mitochondria following damage or stress. At the onset of mitophagy, parkin ubiquitylates proteins on the mitochondrial outer membrane. While the role of parkin at the onset of mitophagy is well understood, less is known about its activity during later stages in the process.
View Article and Find Full Text PDFMitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins.
View Article and Find Full Text PDFParkin is an ubiquitin ligase regulating mitochondrial quality control reactions, including the autophagic removal of depolarized mitochondria (mitophagy). Parkin-mediated protein ubiquitinations may be counteracted by deubiquitinating enzymes (DUBs). We conducted a high-content imaging screen of Parkin translocation to depolarized mitochondria after siRNA mediated silencing of each DUB in Parkin overexpressing HeLa cells.
View Article and Find Full Text PDF