Bacterial nanocellulose (BNC) is a promising dietary fiber with potential as a functional food additive. We evaluated BNC fibers (BNCf) in the Caenorhabditis elegans model to obtain insight into the BNCf's biointeraction with its gastrointestinal tract while reducing the variables of higher complex animals. BNCf were uptaken and excreted by worms without crossing the intestinal barrier, confirming its biosafety regarding survival rate, reproduction, and aging for concentrations up to 34 μg/ml BNCf.
View Article and Find Full Text PDFNeuroblastoma is a pediatric tumor that originates during embryonic development and progresses into aggressive tumors, primarily affecting children under two years old. Many patients are diagnosed as high-risk and undergo chemotherapy, often leading to short- and long-term toxicities. Nanomedicine offers a promising solution to enhance drug efficacy and improve physical properties.
View Article and Find Full Text PDFExposure to plastic nanoparticles has dramatically increased in the last 50 years, and there is evidence that plastic nanoparticles can be absorbed by organisms and cross the blood-brain-barrier (BBB). However, their toxic effects, especially on the nervous system, have not yet been extensively investigated, and most of the knowledge is based on studies using different conditions and systems, thus hard to compare. In this work, physicochemical properties of non-modified polystyrene (PS) and amine-functionalized PS (PS-NH ) nanoparticles are initially characterized.
View Article and Find Full Text PDFCobaltabis(dicarbollides), ferrabis(dicarbollide), and their halogenated derivatives are the most studied metallacarboranes with great medical potential. These versatile compounds and their iodinated derivatives can be used in chemotherapy, radiotherapy, particle therapy, and bioimaging when isotopes are used. These metallacarboranes have been evaluated in vitro and recently in vivo with complex animal models.
View Article and Find Full Text PDFThere is a growing interest in developing natural hydrogel-based scaffolds to culture cells in a three-dimensional (3D) millieu that better mimics the cells' microenvironment. A promising approach is to use hydrogels from animal tissues, such as decellularized extracellular matrices; however, they usually exhibit suboptimal mechanical properties compared to native tissue and their composition with hundreds of different protein complicates to elucidate which stimulus triggers cell's responses. As simpler scaffolds, type I collagen hydrogels are used to study cell behavior in mechanobiology even though they are also softer than native tissues.
View Article and Find Full Text PDFExperimental studies and clinical trials of nanoparticles for treating diseases are increasing continuously. However, the reach to the market does not correlate with these efforts due to the enormous cost, several years of development, and off-target effects like cardiotoxicity. Multicellular organisms such as the () can bridge the gap between and vertebrate testing as they can provide extensive information on systemic toxicity and specific harmful effects through facile experimentation following 3R EU directives on animal use.
View Article and Find Full Text PDFThe evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM's vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings.
View Article and Find Full Text PDFThe low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment.
View Article and Find Full Text PDFRatiometric fluorescent nanothermometers with near-infrared emission play an important role in in vivo sensing since they can be used as intracellular thermal sensing probes with high spatial resolution and high sensitivity, to investigate cellular functions of interest in diagnosis and therapy, where current approaches are not effective. Herein, the temperature-dependent fluorescence of organic nanoparticles is designed, synthesized, and studied based on the dual emission, generated by monomer and excimer species, of the tris(2,4,6-trichlorophenyl)methyl radical (TTM) doping organic nanoparticles (TTMd-ONPs), made of optically neutral tris(2,4,6-trichlorophenyl)methane (TTM-αH), acting as a matrix. The excimer emission intensity of TTMd-ONPs decreases with increasing temperatures whereas the monomer emission is almost independent and can be used as an internal reference.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed.
View Article and Find Full Text PDFSoft-tissue replacements are challenging due to the stringent compliance requirements for the implanted materials in terms of biocompatibility, durability, high wear resistance, low friction, and water content. Acrylate hydrogels are worth considering as soft tissue implants as they can be photocurable and sustain customized shapes through 3D bioprinting. However, acrylate-based hydrogels present weak mechanical properties and significant dimensional changes when immersed in liquids.
View Article and Find Full Text PDFComplex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies.
View Article and Find Full Text PDFTomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato.
View Article and Find Full Text PDFPurpose: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[-COSAN] and Na[8,8'-I--COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM.
Methods: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal () at the L4-stage and using the eggs.
Results: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies.
Actuated structures are becoming relevant in medical fields; however, they call for flexible/soft-base materials that comply with biological tissues and can be synthesized in simple fabrication steps. In this work, we extend the palette of techniques to afford soft, actuable spherical structures taking advantage of the biosynthesis process of bacterial cellulose. Bacterial cellulose spheres (BCS) with localized magnetic nanoparticles (NPs) have been biosynthesized using two different one-pot processes: in agitation and on hydrophobic surface-supported static culture, achieving core-shell or hollow spheres, respectively.
View Article and Find Full Text PDFThe use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation. Despite recent advances in the optimization of mesh porous structure, incorporation of anti-adherent coatings or new approaches in the mesh fixation systems, clinicians and manufacturers are still pursuing an optimal material to improve the clinical outcomes at a cost-effective ratio.
View Article and Find Full Text PDFLimbal stem cells (LSCs) are already used in cell-based treatments for ocular surface disorders. Clinical translation of LSCs-based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.
View Article and Find Full Text PDFCarrier-assisted cell transplantation offers new strategies to improve the clinical outcomes of cellular therapies. Bacterial nanocellulose (BC) is an emerging biopolymer that might be of great value in the development of animal-free, customizable, and temperature-stable novel cell carriers. Moreover, BC exhibits a myriad of modification possibilities to incorporate additional functionalities.
View Article and Find Full Text PDFCorrection for 'Bacterial nanocellulose as a corneal bandage material: a comparison with amniotic membrane' by Irene Anton-Sales et al., Biomater. Sci.
View Article and Find Full Text PDFThe Equisetum enzyme hetero-trans-β-glucanase (HTG) covalently grafts native plant cellulose (donor-substrate) to xyloglucan (acceptor-substrate), potentially offering a novel 'green' method of cellulose functionalisation. However, the range of cellulosic and non-cellulosic donor substrates that can be utilised by HTG is unknown, limiting our insight into its biotechnological potential. Here we show that HTG binds all celluloses tested (papers, tissues, hydrogels, bacterial cellulose) to radioactively- or fluorescently-labelled xyloglucan-heptasaccharide (XXXGol; acceptor-substrate).
View Article and Find Full Text PDF