NAR Genom Bioinform
September 2024
Differentiation of multipotential progenitor cells is a key process in the development of any multi-cellular organism and often continues throughout its life. It is often assumed that a bi-potential progenitor develops along a (relatively) straight trajectory until it reaches a decision point where the trajectory bifurcates. At this point one of two directions is chosen, each direction representing the unfolding of a new transcriptional programme.
View Article and Find Full Text PDFGlial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions.
View Article and Find Full Text PDFThe HNF1α truncation is the most common mutation associated with maturity-onset diabetes of the young 3 (MODY3). Although shown to impair HNF1α signaling, the mechanism by which HNF1α causes MODY3 is not fully understood. Here we use MODY3 patient and CRISPR/Cas9-engineered human induced pluripotent stem cells (hiPSCs) grown as 3D organoids to investigate how HNF1α affects hiPSC differentiation during pancreatic development.
View Article and Find Full Text PDFQuantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers.
View Article and Find Full Text PDFMissense variants are present amongst the healthy population, but some of them are causative of human diseases. A classification of variants associated with "healthy" or "diseased" states is therefore not always straightforward. A deeper understanding of the nature of missense variants in health and disease, the cellular processes they may affect, and the general molecular principles which underlie these differences is essential to offer mechanistic explanations of the true impact of pathogenic variants.
View Article and Find Full Text PDFDirect drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein-protein interactions (PPIs). Here, we establish an pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein-Protein Interaction Network (PPIN), which we call short loop network motifs (SLM).
View Article and Find Full Text PDFLarge cohorts of human induced pluripotent stem cells (iPSCs) from healthy donors are a potentially powerful tool for investigating the relationship between genetic variants and cellular behavior. Here, we integrate high content imaging of cell shape, proliferation, and other phenotypes with gene expression and DNA sequence datasets from over 100 human iPSC lines. By applying a dimensionality reduction approach, Probabilistic Estimation of Expression Residuals (PEER), we extracted factors that captured the effects of intrinsic (genetic concordance between different cell lines from the same donor) and extrinsic (cell responses to different fibronectin concentrations) conditions.
View Article and Find Full Text PDFWe review recent progress in the mapping of genetic variants to proteins, in the context of their interactions, as measured from experiments and/or computational predictions. Such variants can impact on the molecular mechanisms underlying an interaction and its stability. We highlight recent work which relies on the effective use of protein-protein interaction networks (PPINs), integrated with 3D structural information, for evaluating disease-associated variants.
View Article and Find Full Text PDFSummary: Large numbers of rare and unique titin missense variants have been discovered in both healthy and disease cohorts, thus the correct classification of variants as pathogenic or non-pathogenic has become imperative. Due to titin's large size (363 coding exons), current web applications are unable to map titin variants to domain structures. Here, we present a web application, TITINdb, which integrates titin structure, variant, sequence and isoform information, along with pre-computed predictions of the impact of non-synonymous single nucleotide variants, to facilitate the correct classification of titin variants.
View Article and Find Full Text PDF