Background And Objective: Chronic obstructive pulmonary disease (COPD) exhibits diverse patterns of disease progression, due to underlying disease activity. We hypothesized that changes in static hyperinflation or KCO % predicted would reveal subgroups with disease progression unidentified by preestablished markers (FEV, SGRQ, exacerbation history) and associated with unique baseline biomarker profiles. We explored 18-month measures of disease progression associated with 18-54-month mortality, including changes in hyperinflation parameters and transfer factor, in a large German COPD cohort.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis.
View Article and Find Full Text PDFThe continuous emergence of multidrug-resistant bacterial pathogens poses a major global healthcare challenge, with Klebsiella pneumoniae being a prominent threat. We conducted a comprehensive study on K. pneumoniae's antibiotic resistance mechanisms, focusing on outer membrane vesicles (OMVs) and polymyxin, a last-resort antibiotic.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are nanosized particles released by nearly every cell type across all kingdoms of life. As a result, EVs are ubiquitously present in various human body fluids. Composed of a lipid bilayer, EVs encapsulate proteins, nucleic acids, and metabolites, thus playing a crucial role in immunity, for example, by enabling intercellular communication.
View Article and Find Full Text PDFBioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost.
View Article and Find Full Text PDFLower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD.
View Article and Find Full Text PDFIntroduction: Community-acquired pneumonia (CAP) and acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in high morbidity, mortality, and socio-economic burden. The usage of easily accessible biomarkers informing on disease entity, severity, prognosis, and pathophysiological endotypes is limited in clinical practice. Here, we have analyzed selected plasma markers for their value in differential diagnosis and severity grading in a clinical cohort.
View Article and Find Full Text PDFBackground: Mental disorders (MDs) are one of the leading causes for workforce sickness absence and disability worldwide. The burden, costs and challenges are enormous for the individuals concerned, employers and society at large. Although most MDs are characterised by a high risk of relapse after treatment or by chronic courses, interventions that link medical-psychotherapeutic approaches with work-directed components to facilitate a sustainable return to work (RTW) are rare.
View Article and Find Full Text PDFMany viruses require proteolytic activation of their envelope proteins for infectivity, and relevant host proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of influenza A virus (IAV) and various coronaviruses (CoV). Increased TMPRSS2 expression has been associated with a higher risk of severe influenza infection and enhanced susceptibility to SARS-CoV-2.
View Article and Find Full Text PDFBackground: Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction.
View Article and Find Full Text PDFGram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles.
View Article and Find Full Text PDF(.) is a bacterial pathogen which is a common causative agent of pneumonia. In humans, it infects alveolar macrophages and transfers hundreds of virulence factors that interfere with cellular signalling pathways and the transcriptomic landscape to sustain its own replication.
View Article and Find Full Text PDFPneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital.
View Article and Find Full Text PDFPneumonia causes the highest mortality of all infectious diseases worldwide. The most common pathogens are bacteria but there are also epidemic or pandemic lung infections caused by influenza or coronaviruses, such as the current pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to the occurrence of antibiotic resistance and immune pathologies, such as in sepsis, important challenges lie in considering the susceptibility of individual patients.
View Article and Find Full Text PDFis an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections.
View Article and Find Full Text PDFBackground: Community-acquired pneumonia (CAP) and acute exacerbation of chronic obstructive pulmonary disease (AECOPD) represent a major burden of disease and death and their differential diagnosis is critical. A potential source of relevant accessible biomarkers are blood-borne small extracellular vesicles (sEVs).
Methods: We performed an extracellular vesicle array to find proteins on plasma sEVs that are differentially expressed and possibly allow the differential diagnosis between CAP and AECOPD.
Influenza A virus (IAV) causes severe respiratory infections and alveolar epithelial damage resulting in acute respiratory distress syndrome (ARDS). Extracellular vesicles (EVs) have been shown to mediate cellular crosstalk in inflammation by transfer of microRNAs (miRNAs). In this study, we found significant changes in the miRNA composition of EVs in the bronchoalveolar lavage fluid from patients with IAV-induced ARDS.
View Article and Find Full Text PDFImmune response in the lung has to protect the huge alveolar surface against pathogens while securing the delicate lung structure. Macrophages and alveolar epithelial cells constitute the first line of defense and together orchestrate the initial steps of host defense. In this study, we analysed the influence of macrophages on type II alveolar epithelial cells during Legionella pneumophila-infection by a systems biology approach combining experimental work and mathematical modelling.
View Article and Find Full Text PDFExtracellular vesicles from eukaryotic cells and outer membrane vesicles (OMVs) released from gram-negative bacteria have been described as mediators of pathogen-host interaction and intercellular communication. Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia.
View Article and Find Full Text PDFBacteria are able to secrete a variety of molecules via various secretory systems. Besides the secretion of molecules into the extracellular space or directly into another cell, Gram-negative bacteria can also form outer membrane vesicles (OMVs). These membrane vesicles can deliver their cargo over long distances, and the cargo is protected from degradation by proteases and nucleases.
View Article and Find Full Text PDFPharmacol Res Perspect
October 2016
Fibromyalgia is characterized by widespread musculoskeletal pain, fatigue, and depression. The aim was to analyze potential mitochondrial dysfunction or autophagy in mice after exposure to intermittent cold stress (ICS). Muscle and liver specimens were obtained from 36 mice.
View Article and Find Full Text PDFThe formation and release of outer membrane vesicles (OMVs) is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila), a causative agent of severe pneumonia.
View Article and Find Full Text PDF