The structure and thickness of the binary adsorbate layers formed on silicon oxide exposed in n-propanol/water and n-pentanol/water vapor mixtures under atmospheric pressure and room temperature conditions were investigated using attenuated total reflectance infrared spectroscopy (ATR-IR). The ATR-IR spectra of the adsorbate layers were analyzed while the vapor composition was varied stepwise by changing the mixing ratios of (a) n-propanol vapor stream with a 94% relative partial pressure (P/P(sat)) and 94% P/P(sat) water stream and (b) 83% P/P(sat)n-pentanol and 85% P/P(sat) water streams. The amount of the adsorbed water with solid-like structure in the binary adsorbate layer was larger in successive cycles of the water/alcohol vapor composition change, while n-alcohol showed negligible hysteresis in the amount adsorbed.
View Article and Find Full Text PDFThe water adsorption isotherms on methyl (CH(3))-, hydroxyl (OH)-, and carboxylic acid (COOH)-terminated alkylthiol self-assembled monolayers (SAMs) on Au were studied at room temperature and ambient pressure with polarization modulation reflection-absorption infrared spectroscopy (PM-RAIRS). PM-RAIRS analysis showed that water does not adsorb at all on the CH(3)-SAM/Au at subsaturation humidity conditions. In a dry Ar environment, the OH-SAM/Au holds at least 2 layer thick strongly bound water molecules which exhibit a broad O-H stretch vibration peak centered at ∼3360 cm(-1).
View Article and Find Full Text PDFThe non-centrosymmetry requirement of sum frequency generation (SFG) vibration spectroscopy allows the detection and quantification of crystalline cellulose in lignocellulose biomass without spectral interferences from hemicelluloses and lignin. This paper shows a correlation between the amount of crystalline cellulose in biomass and the SFG signal intensity. Model biomass samples were prepared by mixing commercially available cellulose, xylan, and lignin to defined concentrations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2011
The hydrophobic but hygroscopic nature of polydimethylsiloxane (PDMS) with quaternary ammonium cationic side chains adsorbed on a SiO(2) surface was investigated with sum frequency generation vibration spectroscopy (SFG) and attenuated total reflectance infrared spectroscopy (ATR-IR). PDMS with cationic side chains, named cationic polymer lubricant (CPL), forms a self-healing boundary lubrication film on SiO(2). It is interesting that CPL films are externally hydrophobic but internally hydrophilic.
View Article and Find Full Text PDFThe selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements.
View Article and Find Full Text PDFThis paper describes the direct deposition of hydrocarbon coatings with a static water contact angle higher than 150 using simple C6 hydrocarbons as a reactive gas in helium plasma generated in ambient air without any preroughening of the silicon (100) substrate. The film morphology and hydrophobicity are found to strongly depend on the structure of the reagent hydrocarbon. The films deposited with n-hexane and cyclohexane exhibited relatively smooth morphology and the water contact angle was only ∼95°, similar to polypropylene.
View Article and Find Full Text PDFThe origin and role of tribochemical reaction products formed while sliding silicon oxide surfaces in the presence of adsorbed alcohol molecules in equilibrium with the vapor phase were studied. Wear and friction coefficient studies with varying contact loads and n-pentanol vapor environments were used to determine under what operating conditions the tribochemical reaction species was produced. Imaging time-of-flight secondary ion mass spectrometry and microinfrared spectroscopy found that hydrocarbon species with a molecular weight higher than the starting vapor molecules are produced when there is wear of the SiO(2) surface.
View Article and Find Full Text PDFThis paper investigates the reaction steps involved in tribochemical wear of SiO(2) surfaces in humid ambient conditions and the mechanism of wear prevention due to alcohol adsorption. The friction and wear behaviors of SiO(2) were tested in three distinct gaseous environments at room temperature: dry argon, argon with 50% relative humidity (RH), and argon with n-pentanol vapor pressure 50% relative to the saturation pressure (P/P(sat)). Adsorbed gas molecules have significant chemical influences on the wear of the surface.
View Article and Find Full Text PDFThe average molecular orientation in the adsorbed water layers formed on amorphous SiO(2) in ambient conditions was determined as a function of relative humidity using polarization attenuated total reflectance infrared spectroscopy (ATR-IR). The silicon oxide surface was prepared by chemically cleaning in aqueous solution, washing with water, and drying with argon. After drying, this produced a SiO(2) surface with hydroxyl groups, giving rise to a water contact angle < 5 degrees.
View Article and Find Full Text PDF