Animals with different life-history types vary in their stress-coping styles, which can affect their fitness and survival in changing environments. We studied how chronic exposure to manganese sulfate (MnSO), a common aquatic pollutant, affects life-history traits, physiology, and behavior of zebrafish () with two life-history types: fast (previously selected for fast juvenile growth, early maturation, and small adult body size) and slow life histories (selected for slow juvenile growth, late maturation, and large adult body size). We found that MnSO had negative effects on growth and condition factors, but the magnitude of these effects depended on the life-history type.
View Article and Find Full Text PDFUnlabelled: Ecological stability is a fundamental aspect of food web dynamics. In this study, we explore the factors influencing stability in complex ecological networks, characterizing it through biomass oscillations and species persistence. Using an Extended Niche model, we generate diverse food web structures and investigate the effects of intraspecific consumer interference, network size, connectance, and diet specialism on stability.
View Article and Find Full Text PDFForaging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua.
View Article and Find Full Text PDFFishing-induced evolution (FIE) threatens the ecology, resilience, and economic value of fish populations. Traits under selection, and mechanisms of selection, can be influenced by abiotic and biotic perturbations, yet this has been overlooked. Here, we present the fishery selection continuum, where selection ranges from rigid fisheries selection to flexible fisheries selection.
View Article and Find Full Text PDFCurrent ecological research and ecosystem management call for improved understanding of the abiotic drivers of community dynamics, including temperature effects on species interactions and biomass accumulation. Allometric trophic network (ATN) models, which simulate material (carbon) transfer in trophic networks from producers to consumers based on mass-specific metabolic rates, provide an attractive framework to study consumer-resource interactions from organisms to ecosystems. However, the developed ATN models rarely consider temporal changes in some key abiotic drivers that affect, for example, consumer metabolism and producer growth.
View Article and Find Full Text PDFCan the advantage of risk-managing life-history strategies become a disadvantage under human-induced evolution? Organisms have adapted to the variability and uncertainty of environmental conditions with a vast diversity of life-history strategies. One such evolved strategy is multiple-batch spawning, a spawning strategy common to long-lived fishes that 'hedge their bets' by distributing the risk to their offspring on a temporal and spatial scale. The fitness benefits of this spawning strategy increase with female body size, the very trait that size-selective fishing targets.
View Article and Find Full Text PDFMany considerably declined fish populations have not fully recovered despite reductions in fishing pressure. One of the possible causes of impaired recovery is the (demographic) Allee effect. To investigate whether low-abundance recruitment dynamics can switch between compensation and depensation, the latter implying the presence of the Allee effect, we analysed the stock-recruitment time series of 17 depleted cod-type and flatfish populations using a Bayesian change point model.
View Article and Find Full Text PDFWhether gill area constrains fish metabolism through oxygen limitation is a debated topic. Here, the authors provide insights into this question by analysing mass-specific metabolic rates across 44 teleost fishes extracted from FishBase. They explore whether species deviations from metabolic rates predicted by body mass can be explained by species gill area.
View Article and Find Full Text PDFParasitic salmon lice (Lepeophtheirus salmonis) threaten the economic and ecological sustainability of salmon farming, and their evolved resistance to treatment with emamectin benzoate (EMB) has been a major problem for salmon farming in the Atlantic Ocean. In contrast, the Pacific Ocean, where wild salmon are far more abundant, has not seen widespread evolution of EMB-resistant lice. Here, we use EMB bioassays and counts of lice on farms from the Broughton Archipelago, Canada-a core region of salmon farming in the Pacific-to show that EMB sensitivity has dramatically decreased since 2010, concurrent with marked decrease in the field efficacy of EMB treatments.
View Article and Find Full Text PDFAccording to the theory of compensatory dynamics, depleted populations should recover when the threat responsible for their decline is removed because population growth is assumed to be highest when populations are at their smallest viable sizes. Yet, many seriously depleted fish populations have failed to recover despite threat mitigation. Atlantic cod () stocks off Newfoundland, despite 30 years of dramatically reduced fishing mortality and numerous fishery closures, have not recovered, suggesting that drivers other than fishing can regulate the growth of collapsed fish populations, inhibiting or preventing their recovery.
View Article and Find Full Text PDFFisheries exploitation can cause genetic changes in heritable traits of targeted stocks. The direction of selective pressure forced by harvest acts typically in reverse to natural selection and selects for explicit life histories, usually for younger and smaller spawners with deprived spawning potential. While the consequences that such selection might have on the population dynamics of a single species are well emphasized, we are just beginning to perceive the variety and severity of its propagating effects within the entire marine food webs and ecosystems.
View Article and Find Full Text PDFCompetition for shared resources is commonly assumed to restrict population-level niche width of coexisting species. However, the identity and abundance of coexisting species, the prevailing environmental conditions, and the individual body size may shape the effects of interspecific interactions on species' niche width. Here we study the effects of interspecific and intraspecific interactions, lake area and altitude, and fish body size on the trophic niche width and resource use of a generalist predator, the littoral-dwelling large, sparsely rakered morph of European whitefish (Coregonus lavaretus; hereafter LSR whitefish).
View Article and Find Full Text PDFSenescence is often described as an age-dependent increase in natural mortality (known as actuarial senescence) and an age-dependent decrease in fecundity (known as reproductive senescence), and its role in nature is still poorly understood. Based on empirical estimates of reproductive and actuarial senescence, we used mathematical simulations to explore how senescence affects the population dynamics of , a small, schooling salmonid fish. Using an empirically based eco-evolutionary model, we investigated how the presence or absence of senescence affects the eco-evolutionary dynamics of a fish population during pristine, intensive harvest, and recovery phases.
View Article and Find Full Text PDFStochastic environments shape life-history traits and can promote selection for risk-spreading strategies, such as bet-hedging. Although the strategy has often been hypothesized to exist for various species, empirical tests providing firm evidence have been rare, mainly due to the challenge in tracking fitness across generations. Here, we take a 'proof of principle' approach to explore whether the reproductive strategy of multiple-batch spawning constitutes a bet-hedging.
View Article and Find Full Text PDFAlmost all organisms grow in size during their lifetime and switch diets, trophic positions, and interacting partners as they grow. Such ontogenetic development introduces life-history stages and flows of biomass between the stages through growth and reproduction. However, current research on complex food webs rarely considers life-history stages.
View Article and Find Full Text PDFCOVID-19 crisis has emphasized how poorly prepared humanity is to cope with global disasters. However, this crisis also offers a unique opportunity to move towards a more sustainable and equitable future. Here, we identify the underlying environmental, social, and economic chronic causes of the COVID-19 crisis.
View Article and Find Full Text PDFEvidence of contemporary evolution across ecological time scales stimulated research on the eco-evolutionary dynamics of natural populations. Aquatic systems provide a good setting to study eco-evolutionary dynamics owing to a wealth of long-term monitoring data and the detected trends in fish life-history traits across intensively harvested marine and freshwater systems. In the present study, we focus on modelling approaches to simulate eco-evolutionary dynamics of fishes and their ecosystems.
View Article and Find Full Text PDFInfectious diseases are key drivers of wildlife populations and agriculture production, but whether and how climate change will influence disease impacts remains controversial. One of the critical knowledge gaps that prevents resolution of this controversy is a lack of high-quality experimental data, especially in marine systems of significant ecological and economic consequence. Here, we performed a manipulative experiment in which we tested the temperature-dependent effects on Atlantic salmon (Salmo salar) of sea lice (Lepeophtheirus salmonis)-a parasite that can depress the productivity of wild-salmon populations and the profits of the salmon-farming industry.
View Article and Find Full Text PDFThe ocean is a lifeline for human existence, but current practices risk severely undermining ocean sustainability. Present and future social-ecological challenges necessitate the maintenance and development of knowledge and action by stimulating collaboration among scientists and between science, policy, and practice. Here we explore not only how such collaborations have developed in the Nordic countries and adjacent seas but also how knowledge from these regions contributes to an understanding of how to obtain a sustainable ocean.
View Article and Find Full Text PDFGenetic and genomic architectures of traits under selection are key factors influencing evolutionary responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing and eco-evolutionary modeling are unlocking the potential for integrating genomic information into predictions of population responses to environmental change.
View Article and Find Full Text PDFDirectional changes in temperature have well-documented effects on ectotherms, yet few studies have explored how increased thermal variability (a concomitant of climate change) might affect individual fitness. Using a common-garden experimental protocol, we investigated how bidirectional temperature change can affect survival and growth of brook trout (Salvelinus fontinalis) and whether the survival and growth responses differ between two populations, using four thermal-variability treatments (mean: 10 °C; range: 7-13 °C): (i) constancy; (ii) cyclical fluctuations every two days; (iii) low stochasticity (random changes every 2 days); (iv) high stochasticity (random changes daily). Recently hatched individuals were monitored under thermal variability (6 weeks) and a subsequent one-month period of thermal constancy.
View Article and Find Full Text PDFBody size determines key ecological and evolutionary processes of organisms. Therefore, organisms undergo extensive shifts in resources, competitors, and predators as they grow in body size. While empirical and theoretical evidence show that these size-dependent ontogenetic shifts vastly influence the structure and dynamics of populations, theory on how those ontogenetic shifts affect the structure and dynamics of ecological networks is still virtually absent.
View Article and Find Full Text PDFFish stocking is used worldwide in conservation and management, but its effects on food-web dynamics and ecosystem stability are poorly known. To better understand these effects and predict the outcomes of stocking, we used an empirically validated network model of a well-studied lake ecosystem. We simulate two stocking scenarios with two native fish species valuable for fishing.
View Article and Find Full Text PDF