Mineral wool is commonly used in construction as thermal insulation material. After the product's lifetime, it is classified as hazardous waste if no trademark of the European Certification Board for Mineral Wool Products (EUCEB) or the German Institute for Quality Assurance and Labelling (RAL) exists. Mineral Wool Waste (MWW) is typically landfilled in Europe, which is challenging due to its low bulk density and dimensional stability.
View Article and Find Full Text PDFThe decarbonisation of the steel and cement industry is of utmost importance in tackling climate change. Hence, steel production in modern integrated steel mills will be shifted towards electric arc furnaces in the future, in turn causing dwindling supplies of blast furnace slag, which is used as a supplementary cementitious material to reduce the CO emissions of cement production. Achieving a sustainable circular steel and building material economy requires the valorisation of currently landfilled steel slags and investigating utilisation options for electric arc furnace slag, which is increasingly being generated.
View Article and Find Full Text PDFThe hydroxide exchange membrane fuel cell (HEMFC) is a promising energy conversion technology but is limited by the need for platinum group metal (PGM) electrocatalysts, especially for the hydrogen oxidation reaction (HOR). Here we report a Ni-based HOR catalyst that exhibits an electrochemical surface area-normalized exchange current density of 70 μA cm, the highest among PGM-free catalysts. The catalyst comprises Ni nanoparticles embedded in a nitrogen-doped carbon support.
View Article and Find Full Text PDFModulating the electronic structure of atomically dispersed active sites is promising to boost catalytic activity but is challenging to achieve. Here we show a cooperative Ni single-atom-on-nanoparticle catalyst (NiSA/NP) prepared via direct solid-state pyrolysis, where Ni nanoparticles donate electrons to Ni(i)-N-C sites via a network of carbon nanotubes, achieving a high CO current density of 346 mA cm at -0.5 V vs RHE in an alkaline flow cell.
View Article and Find Full Text PDFRecently, the field of Metal-Insulator-Transition (MIT) materials has emerged as an unconventional solution for novel energy efficient electronic functions, such as steep slope subthermionic switches, neuromorphic hardware, reconfigurable radiofrequency functions, new types of sensors, terahertz and optoelectronic devices. Employing radiofrequency (RF) electronic circuits with a MIT material like vanadium Dioxide, VO, requires appropriate characterization tools and fabrication processes. In this work, we develop and use 3D Smith charts for devices and circuits having complex frequency dependences, like the ones resulting using MIT materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2019
Hydroxide-exchange membrane fuel cells can potentially utilize platinum-group-metal (PGM)-free electrocatalysts, offering cost and scalability advantages over more developed proton-exchange membrane fuel cells. However, there is a lack of non-precious electrocatalysts that are active and stable for the hydrogen oxidation reaction (HOR) relevant to hydroxide-exchange membrane fuel cells. Here we report the discovery and development of Ni N as an active and robust HOR catalyst in alkaline medium.
View Article and Find Full Text PDFJunctions between n-type semiconductors of different electron affinity show rectification if the junction is abrupt enough. With the advent of 2D materials, we are able to realize thin van der Waals (vdW) heterostructures based on a large diversity of materials. In parallel, strongly correlated functional oxides have emerged, having the ability to show reversible insulator-to-metal (IMT) phase transition by collapsing their electronic bandgap under a certain external stimulus.
View Article and Find Full Text PDFSteep-slope transistors allow to scale down the supply voltage and the energy per computed bit of information as compared to conventional field-effect transistors (FETs), due to their sub-60 mV/decade subthreshold swing at room temperature. Currently pursued approaches to achieve such a subthermionic subthreshold swing consist in alternative carrier injection mechanisms, like quantum mechanical band-to-band tunneling (BTBT) in Tunnel FETs or abrupt phase-change in metal-insulator transition (MIT) devices. The strengths of the BTBT and MIT have been combined in a hybrid device architecture called phase-change tunnel FET (PC-TFET), in which the abrupt MIT in vanadium dioxide (VO) lowers the subthreshold swing of strained-silicon nanowire TFETs.
View Article and Find Full Text PDF