Publications by authors named "Anna Kotowska"

Microneedles (MNs) offer the potential for discrete and painless transdermal drug delivery, yet poor insertion and dosing consistency have hindered their clinical translation. Specifically, hollow MNs are appropriate for the administration of liquid modalities, including insulin, which could prove to be beneficial for patients with type 1 diabetes mellitus. This work aimed to design and manufacture a hollow MN with an improved insertion and delivery profile suitable for insulin administration.

View Article and Find Full Text PDF

Self-assembling peptide hydrogels (SAPHs) are increasingly being used as two-dimensional (2D) cell culture substrates and three-dimensional (3D) matrices due to their tunable properties and biomimicry of native tissues. Despite these advantages, SAPHs often represent an end-point in cell culture, as isolating cells from them leads to low yields and disruption of cells, limiting their use and post-culture analyses. Here, we report on a protocol designed to easily and effectively disassemble peptide amphiphile (PA) SAPHs to retrieve 3D encapsulated cells with high viability and minimal disruption.

View Article and Find Full Text PDF

Growing clinical evidence reveals that systematic molecular alterations in the brain occur 20 years before the onset of AD pathological features. Apolipoprotein E4 (ApoE4) is one of the most significant genetic risk factors for Alzheimer's disease (AD), which is not only associated with the AD pathological features such as amyloid-β deposition, phosphorylation of tau proteins, and neuroinflammation but is also involved in metabolism, neuron growth, and synaptic plasticity. Multiomics, such as metabolomics and proteomics, are applied widely in identifying key disease-related molecular alterations and disease-progression-related changes.

View Article and Find Full Text PDF

The 3D architecture of RNAs governs their molecular interactions, chemical reactions, and biological functions. However, a large number of RNAs and their protein complexes remain poorly understood due to the limitations of conventional structural biology techniques in deciphering their complex structures and dynamic interactions. To address this limitation, we have benchmarked an integrated approach that combines cryogenic OrbiSIMS, a state-of-the-art solid-state mass spectrometry technique, with computational methods for modelling RNA structures at atomic resolution with enhanced precision.

View Article and Find Full Text PDF

A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in the modulation of the host immune response and are the cells responsible for persistent inflammatory reactions to implanted biomaterials. Two novel immune-instructive polymers that stimulate pro- or anti-inflammatory responses from macrophages in vitro are investigated.

View Article and Find Full Text PDF

Bacterial biofilms are structured communities consisting of cells enmeshed in a self-generated extracellular matrix usually attached to a surface. They contain diverse classes of molecules including polysaccharides, lipids, proteins, nucleic acids, and diverse small organic molecules (primary and secondary metabolites) which are organized to optimize survival and facilitate dispersal to new colonization sites. In situ characterization of the chemical composition and structure of bacterial biofilms is necessary to fully understand their development on surfaces relevant to biofouling in health, industry, and the environment.

View Article and Find Full Text PDF

Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address the current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells during bone formation. Moreover, biomaterial scaffold-based approaches to effectively modulate this crosstalk to favor bone healing are also lacking.

View Article and Find Full Text PDF

Modern mass spectrometry techniques produce a wealth of spectral data, and although this is an advantage in terms of the richness of the information available, the volume and complexity of data can prevent a thorough interpretation to reach useful conclusions. Application of molecular formula prediction (MFP) to produce annotated lists of ions that have been filtered by their elemental composition and considering structural double bond equivalence are widely used on high resolving power mass spectrometry datasets. However, this has not been applied to secondary ion mass spectrometry data.

View Article and Find Full Text PDF

Single-domain antibodies, known as nanobodies, have great potential as biorecognition elements for sensors because of their small size, affinity, specificity, and robustness. However, facile and efficient methods of nanobody immobilization are sought that retain their maximum functionality. Herein, we describe the direct immobilization of nanobodies on gold sensors by exploiting a modified cysteine strategically positioned at the C-terminal end of the nanobody.

View Article and Find Full Text PDF

Label-free protein characterization at surfaces is commonly achieved using digestion and/or matrix application prior to mass spectrometry. We report the assignment of undigested proteins at surfaces in situ using secondary ion mass spectrometry (SIMS). Ballistic fragmentation of proteins induced by a gas cluster ion beam (GCIB) leads to peptide cleavage producing fragments for subsequent Orbitrap analysis.

View Article and Find Full Text PDF

The ability to design surfaces with reversible, high-affinity protein binding sites represents a significant step forward in the advancement of analytical methods for diverse biochemical and biomedical applications. Herein, we report a dynamic supramolecular strategy to directly assemble proteins on surfaces based on multivalent host-guest interactions. The host-guest interactions are achieved by one-step nanofabrication of a well-oriented β-cyclodextrin host-derived self-assembled monolayer on gold (β-CD-SAM) that forms specific inclusion complexes with hydrophobic amino acids located on the surface of the protein.

View Article and Find Full Text PDF

Poly--isopropylacrylamide (polyNIPA) is an extensively studied polymer in the field of controlled drug delivery. PolyNIPA contains carbonyl and amide groups along a hydrophobic chain. In an aqueous environment, crosslinked polyNIPA forms a gel characterized by a reversible volume phase transition temperature (VPTT), in response to changes in the external environment excited by the temperature factor.

View Article and Find Full Text PDF

There is an increasing need in the pharmaceutical industry to reduce drug failure at late stage and thus reduce the cost of developing a new medicine. Since most drug targets are intracellular, this requires a better understanding of the drug disposition within a cell. Secondary ion mass spectrometry has been identified as a potentially important technique to do this, as it is label-free and allows imaging in 3D with subcellular resolution and recent studies have shown promise for amiodarone.

View Article and Find Full Text PDF