Stirred bioreactor systems integrating microcarriers represent a promising approach for therapeutic cell manufacturing. While a variety of microcarriers are commercially available, current options do not integrate the tissue-specific composition of the extracellular matrix (ECM), which can play critical roles in directing cell function. The current study sought to generate microcarriers comprised exclusively of ECM from multiple tissue sources.
View Article and Find Full Text PDFCell function is mediated by interactions with the extracellular matrix (ECM), which has complex tissue-specific composition and architecture. The focus of this article is on the methods for fabricating ECM-derived porous foams and microcarriers for use as biologically-relevant substrates in advanced 3D in vitro cell culture models or as pro-regenerative scaffolds and cell delivery systems for tissue engineering and regenerative medicine. Using decellularized tissues or purified insoluble collagen as a starting material, the techniques can be applied to synthesize a broad array of tissue-specific bioscaffolds with customizable geometries.
View Article and Find Full Text PDFWith the goal of designing a clinically-relevant expansion strategy for human adipose-derived stem/stromal cells (ASCs), methods were developed to synthesize porous microcarriers derived purely from human decellularized adipose tissue (DAT). An electrospraying approach was applied to generate spherical DAT microcarriers with an average diameter of 428 ± 41 μm, which were soft, compliant, and stable in long-term culture without chemical crosslinking. Human ASCs demonstrated enhanced proliferation on the DAT microcarriers relative to commercially-sourced Cultispher-S microcarriers within a spinner culture system over 1 month.
View Article and Find Full Text PDF