Publications by authors named "Anna Koltunow"

Article Synopsis
  • - The study focuses on how proper regulation of communication between cells is essential for the differentiation of cells in plants, particularly in *Arabidopsis thaliana*.
  • - Researchers analyzed gene expression in surrounding somatic and germline cells and found that β-1,3-glucan, a polysaccharide, plays a significant role in cell insulation and signaling through channels called plasmodesmata.
  • - The presence of β-1,3-glucanase in the female germline disrupted this insulation, allowing for changes that affected gene expression and ultimately halted germline development, indicating its crucial role in successful female gamete formation.
View Article and Find Full Text PDF

Apomixis, or asexual seed formation, is prevalent in via a mechanism termed nucellar or adventitious embryony. Here, multiple embryos of a maternal genotype form directly from nucellar cells in the ovule and can outcompete the developing zygotic embryo as they utilize the sexually derived endosperm for growth. Whilst nucellar embryony enables the propagation of clonal plants of maternal genetic constitution, it is also a barrier to effective breeding through hybridization.

View Article and Find Full Text PDF

Apomixis, is an asexual mode of seed formation resulting in genetically identical or clonal seed with a maternal genotype. Apomixis has not been reported in seed crops where its flexible application in plant breeding could accelerate delivery of new varieties. By contrast, a sporophytic form of apomixis termed nucellar or adventitious embryony is common in the Rutaceae containing Citrus crop species.

View Article and Find Full Text PDF

In most diploids the centromere-specific histone H3 (CENH3), the assembly site of active centromeres, is encoded by a single copy gene. Persistance of two CENH3 paralogs in diploids species raises the possibility of subfunctionalization. Here we analysed both CENH3 genes of the  diploid dryland crop cowpea.

View Article and Find Full Text PDF

Most subgenus species are self-incompatible. Some undergo facultative apomixis where most seeds form asexually with a maternal genotype. Most embryo sacs develop by mitosis, without meiosis and seeds form without fertilization.

View Article and Find Full Text PDF

Background: The legume cowpea ( L.) is extensively grown in sub-Saharan Africa. Cowpea, like many legumes has proved recalcitrant to plant transformation.

View Article and Find Full Text PDF

Apomixis in follows a developmental pathway of apospory, where an unreduced embryo sac develops from a somatic ovule cell without meiosis. The avoidance of meiosis together with fertilization-independent seed formation leads to clonal progeny genetically identical to the maternal plant. We have previously described the initial developmental steps of aposporous embryo sac formation in and here, we cytologically observed more than 500 ovules with a focus on the later stages of embryo sac maturation.

View Article and Find Full Text PDF

Cowpea ( (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance.

View Article and Find Full Text PDF

Apomixis results in asexual seed formation where progeny are identical to the maternal plant. In ovules of apomictic species of the subgenus , meiosis of the megaspore mother cell generates four megaspores. Aposporous initial (AI) cells form during meiosis in most ovules.

View Article and Find Full Text PDF

Posttranscriptional gene silencing (PTGS) of transgenes involves abundant 21-nucleotide small interfering RNAs (siRNAs) and low-abundance 22-nucleotide siRNAs produced from double-stranded RNA (dsRNA) by DCL4 and DCL2, respectively. However, DCL2 facilitates the recruitment of RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) to ARGONAUTE 1-derived cleavage products, resulting in more efficient amplification of secondary and transitive dsRNA and siRNAs. Here, we describe a reporter system where RDR6-dependent PTGS is initiated by restricted expression of an inverted-repeat dsRNA specifically in the Arabidopsis () root tip, allowing a genetic screen to identify mutants impaired in RDR6-dependent systemic PTGS.

View Article and Find Full Text PDF

Background And Aims: Apomixis, or asexual seed formation, in polyploid Hieracium subgenus Pilosella species results in clonal progeny with a maternal genotype. An aposporous embryo sac forms mitotically from a somatic cell, without prior meiosis, while embryo and endosperm formation is fertilization independent (autonomous). The latter two developmental components are tightly linked in Hieracium .

View Article and Find Full Text PDF

Background: Application of apomixis, or asexual seed formation, in crop breeding would allow rapid fixation of complex traits, economizing improved crop delivery. Identification of apomixis genes is confounded by the polyploid nature, high genome complexity and lack of genomic sequence integration with reproductive tissue transcriptomes in most apomicts.

Results: A genomic and transcriptomic resource was developed for Hieracium subgenus Pilosella (Asteraceae) which incorporates characterized sexual, apomictic and mutant apomict plants exhibiting reversion to sexual reproduction.

View Article and Find Full Text PDF

In this review, we explore Gregor Mendel's hybridization experiments with Hieracium , update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops. From our perspective, it is easy to conclude that Gregor Mendel's work on pea was insightful, but his peers clearly did not regard it as being either very convincing or of much importance. One apparent criticism was that his findings only applied to pea.

View Article and Find Full Text PDF

Overview of developmental events and signalling during central cell maturation and early endosperm development with a focus on mechanisms of sexual and autonomous endosperm initiation. Endosperm is important for seed viability and global food supply. The mechanisms regulating the developmental transition between Female Gametophyte (FG) maturation and early endosperm development in angiosperms are difficult to study as they occur buried deep within the ovule.

View Article and Find Full Text PDF

In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments.

View Article and Find Full Text PDF

Evidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated partially on rescue medium with some forming callus.

View Article and Find Full Text PDF

Background And Aims: Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis.

View Article and Find Full Text PDF

Arabidopsis END1-LIKE (AtEND1) was identified as a homolog of the barley endosperm-specific gene END1 and provides a model for the study of this class of genes and their products. The END1 is expressed in the endosperm transfer cells (ETC) of grasses. The ETC are responsible for transfer of nutrients from maternal tissues to the developing endosperm.

View Article and Find Full Text PDF

Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis.

View Article and Find Full Text PDF

Over 200 imprinted genes in rice endosperm are known, but the mechanisms modulating their parental allele-specific expression are poorly understood. Here we use three imprinted genes, OsYUCCA11, yellow2-like and ubiquitin hydrolase, to show that differential DNA methylation and tri-methylation of histone H3 lysine 27 (H3K27me3 ) in the promoter and/or gene body influences allele-specific expression or the site of transcript initiation. Paternal expression of OsYUCCA11 required DNA methylation in the gene body whereas the gene body of the silenced maternal allele was hypomethylated and marked with H3K27me3 .

View Article and Find Full Text PDF

The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane.

View Article and Find Full Text PDF
Article Synopsis
  • Apomixis in Hieracium praealtum, a type of asexual reproduction, is regulated by two dominant genes, one of which is called the LOSS OF APOMEIOSIS (LOA) locus.
  • The LOA locus is crucial for starting apomixis, creating embryo sacs without meiosis (apospory), and inhibiting sexual reproduction, with its structure featuring extensive repeating sequences along the chromosome.
  • Research using fluorescence in situ hybridization (FISH) demonstrated that the LOA locus can be isolated from these repetitive sequences, indicating that these repeats are not necessary for the process of apospory or preventing female meiosis.
View Article and Find Full Text PDF

Hieracium praealtum forms seeds asexually by apomixis. During ovule development, sexual reproduction initiates with megaspore mother cell entry into meiosis and formation of a tetrad of haploid megaspores. The sexual pathway ceases when a diploid aposporous initial (AI) cell differentiates, enlarges, and undergoes mitosis, forming an aposporous embryo sac that displaces sexual structures.

View Article and Find Full Text PDF