Parasitic plants are globally prevalent pathogens with important ecological functions but also potentially devastating agricultural consequences. Common to all parasites is the formation of the haustorium which requires parasite organ development and tissue invasion into the host. Both processes involve cell wall modifications.
View Article and Find Full Text PDFParasitic plants are globally prevalent pathogens that withdraw nutrients from their host plants using an organ known as the haustorium. The external environment including nutrient availability affects the extent of parasitism and to understand this phenomenon, we investigated the role of nutrients and found that nitrogen is sufficient to repress haustoria formation in the root parasite Phtheirospermum japonicum. Nitrogen increases levels of abscisic acid (ABA) in P.
View Article and Find Full Text PDFBackground: Spironucleus salmonicida is an anaerobic parasite that can cause systemic infections in Atlantic salmon. Unlike other diplomonad parasites, such as the human pathogen Giardia intestinalis, Spironucleus species can infiltrate the blood stream of their hosts eventually colonizing organs, skin and gills. How this presumed anaerobe can persist and invade oxygenated tissues, despite having a strictly anaerobic metabolism, remains elusive.
View Article and Find Full Text PDFParasitic plants are widespread pathogens that infect numerous plant species and cause devastating agricultural losses. They efficiently withdraw water, nutrients and sugars from their hosts by fusing tissues and connecting their vasculature to the host vasculature. This ability to parasitize is found in a wide range of species and has evolved at least eleven independent times, suggesting a recurring and flexible developmental strategy.
View Article and Find Full Text PDFMembrane engineering is a generic methodology for increasing the selectivity of a cell biosensor against a target molecule, by electroinserting target-specific receptor-like molecules on the cell surface. Previous studies have elucidated the biochemical aspects of the interaction between various analytes (including viruses) and their homologous membrane-engineered cells. In the present study, purified anti-biotin antibodies from a rabbit antiserum along with in-house prepared biotinylated bovine serum albumin (BSA) were used as a model antibody-antigen pair of molecules for facilitating membrane engineering experiments.
View Article and Find Full Text PDFBackground: Myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular junction usually caused by antibodies to the nicotinic acetylcholine receptor (AChR) and occasionally to muscle-specific kinase (MuSK). D-penicillamine is a therapeutic agent for several diseases, but can also induce a number of immune-mediated disorders, including MG, as a side-effect. In most patients with D-penicillamine-induced MG, anti-AChR antibodies are detected, but the presence of anti-MuSK antibodies has not been reported previously.
View Article and Find Full Text PDFThe isolation of human antibodies against muscle acetylcholine receptor (AChR), the autoantigen involved in myasthenia gravis (MG), is important for the development of therapeutically useful reagents. Monovalent antibody fragments from monoclonal antibodies against the main immunogenic region (MIR) of AChR protect the receptor from the destructive activity of MG autoantibodies. Human anti-AChR alpha-subunit antibody fragments with therapeutic potential have been isolated using phage display antibody libraries.
View Article and Find Full Text PDF