Publications by authors named "Anna Kliuchnikova"

Background: This study aims to analyze the exploration degree of popular model organisms by utilizing annotations from the UniProtKB (Swiss-Prot) knowledge base. The research focuses on understanding the genomic and post-genomic data of various organisms, particularly in relation to aging as an integral model for studying the molecular mechanisms underlying pathological processes and physiological states.

Methods: Having characterized the organisms by selected parameters (numbers of gene splice variants, post-translational modifications, etc.

View Article and Find Full Text PDF

This article provides a systematic review of research conducted on the proteomic composition of blood as part of a complex biological age estimation. We performed a comprehensive analysis of 17 publicly available datasets and compiled an integral list of proteins. These proteins were sorted based on their detection probability using mass spectrometry in human plasma.

View Article and Find Full Text PDF
Article Synopsis
  • Expansion of CAG repeats in certain genes is linked to neurodegenerative diseases, but the mechanisms are not well understood; this study investigates how these repeats interact with RNA editing enzymes like ADAR.
  • Researchers used induced pluripotent stem cells (iPSCs) and brain organoids from Huntington's disease and ataxia type 17 patients to analyze RNA editing via next-generation sequencing.
  • Results showed that while some brain organoids with specific CAG repeats had decreased RNA editing, most cultures did not support the hypothesis that CAG repeats affect editing levels significantly.
View Article and Find Full Text PDF

The proteogenomic search pipeline developed in this work has been applied for reanalysis of 40 publicly available shotgun proteomic datasets from various human tissues comprising more than 8000 individual LC-MS/MS runs, of which 5442 .raw data files were processed in total. This reanalysis was focused on searching for ADAR-mediated RNA editing events, their clustering across samples of different origins, and classification.

View Article and Find Full Text PDF

A meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a “stable” part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases.

View Article and Find Full Text PDF

Cancer cell lines responded differentially to type I interferon treatment in models of oncolytic therapy using vesicular stomatitis virus (VSV). Two opposite cases were considered in this study, glioblastoma DBTRG-05MG and osteosarcoma HOS cell lines exhibiting resistance and sensitivity to VSV after the treatment, respectively. Type I interferon responses were compared for these cell lines by integrative analysis of the transcriptome, proteome, and RNA editome to identify molecular factors determining differential effects observed.

View Article and Find Full Text PDF

Adenosine-to-inosine RNA editing is a system of post-transcriptional modification widely distributed in metazoans which is catalyzed by ADAR enzymes and occurs mostly in double-stranded RNA (dsRNA) before splicing. This type of RNA editing changes the genetic code, as inosine generally pairs with cytosine in contrast to adenosine, and this expectably modulates RNA splicing. We review the interconnections between RNA editing and splicing in the context of human cancer.

View Article and Find Full Text PDF

Mass spectrometry-based proteome analysis implies matching the mass spectra of proteolytic peptides to amino acid sequences predicted from genomic sequences. Reliability of peptide variant identification in proteogenomic studies is often lacking. We propose a way to interpret shotgun proteomics results, specifically in the data-dependent acquisition mode, as protein sequence coverage by multiple reads as it is done in nucleic acid sequencing for calling of single nucleotide variants.

View Article and Find Full Text PDF

Adenosine-to-inosine RNA editing is an enzymatic post-transcriptional modification which modulates immunity and neural transmission in multicellular organisms. In particular, it involves editing of mRNA codons with the resulting amino acid substitutions. We identified such sites for developmental proteomes of at the protein level using available data for 15 stages of fruit fly development from egg to imago and 14 time points of embryogenesis.

View Article and Find Full Text PDF

Proteogenomics is based on the use of customized genome or RNA sequencing databases for interrogation of shotgun proteomics data in search for proteome-level evidence of genome variations or RNA editing. In this work, the products of adenosine-to-inosine RNA editing in human and murine brain proteomes are identified using publicly available brain proteome LC-MS/MS datasets and an RNA editome database compiled from several sources. After filtering of false-positive results, 20 and 37 sites of editing in proteins belonging to 14 and 32 genes are identified for murine and human brain proteomes, respectively.

View Article and Find Full Text PDF

Adenosine-to-inosine RNA editing is one of the most common types of RNA editing, a posttranscriptional modification made by special enzymes. We present a proteomic study on this phenomenon for Drosophila melanogaster. Three proteome data sets were used in the study: two taken from public repository and the third one obtained here.

View Article and Find Full Text PDF

The identification of genetically encoded variants at the proteome level is an important problem in cancer proteogenomics. The generation of customized protein databases from DNA or RNA sequencing data is a crucial stage of the identification workflow. Genomic data filtering applied at this stage may significantly modify variant search results, yet its effect is generally left out of the scope of proteogenomic studies.

View Article and Find Full Text PDF

Twenty-nine human aqueous humor samples from patients with eye diseases such as cataract and glaucoma with and without pseudoexfoliation syndrome were characterized by LC-high resolution MS analysis. In total, 269 protein groups were identified with 1% false discovery rate including 32 groups that were not reported previously for this biological fluid. Since the samples were analyzed individually, but not pooled, 36 proteins were identified in all samples, comprising the constitutive proteome of the fluid.

View Article and Find Full Text PDF