Publications by authors named "Anna Khimchenko"

Background: While shaving-induced erythema is a common inflammatory skin issue, there is a lack of quantitative information on how well a shaving product performs in this regard. In this study, multispectral near-infrared spectroscopy (NIRS) imaging was used to quantitatively and qualitatively measure the extent of shaving-induced erythema. The research compares a safety razor and a cartridge razor to evaluate their impact on skin irritation.

View Article and Find Full Text PDF

There have been great efforts on the nanoscale 3D probing of brain tissues to image subcellular morphologies. However, limitations in terms of tissue coverage, anisotropic resolution, stain dependence, and complex sample preparation all hinder achieving a better understanding of the human brain functioning in the subcellular context. Herein, X-ray nanoholotomography is introduced as an emerging synchrotron radiation-based technology for large-scale, label-free, direct imaging with isotropic voxel sizes down to 25 nm, exhibiting a spatial resolution down to 88 nm.

View Article and Find Full Text PDF

Visualizing the internal architecture of large soft tissue specimens within the laboratory environment in a label-free manner is challenging, as the conventional absorption-contrast tomography yields a poor contrast. In this communication, we present the integration of an X-ray double-grating interferometer (XDGI) into an advanced, commercially available micro computed tomography system nanotom m with a transmission X-ray source and a micrometer-sized focal spot. The performance of the interferometer is demonstrated by comparing the registered three-dimensional images of a human knee joint sample in phase- and conventional absorption-contrast modes.

View Article and Find Full Text PDF

The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM).

View Article and Find Full Text PDF

Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth.

View Article and Find Full Text PDF

Histological examination achieves sub-micrometer resolution laterally. In the third dimension, however, resolution is limited to section thickness. In addition, histological sectioning and mounting sections on glass slides introduce tissue-dependent stress and strain.

View Article and Find Full Text PDF