Publications by authors named "Anna Katrine Vangsgaard"

In this paper, a set of mathematical tools are developed and assembled to quantify, predict and virtually assess NO emission mitigation strategies in partial nitritation (PN) / anammox (ANX) granular based reactors. The proposed approach is constructed upon a set of data pre-treatment methods, process simulation models, control tools (and algorithms) and key performance indicators to analyze, reproduce, and forecast the behavior of multiple operational variables within aerobic granular sludge systems. All these elements are tested on two full-scale data sets (#D1, #D2) collected over a period of four months (Sept-Dec 2023).

View Article and Find Full Text PDF

A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface.

View Article and Find Full Text PDF

A comprehensive and global sensitivity analysis was conducted under a range of operating conditions. The relative importance of mass transfer resistance versus kinetic parameters was studied and found to depend on the operating regime as follows: Operating under the optimal loading ratio of 1.90(gO(2)/m(3)/d)/(gN/m(3)/d), the system was influenced by mass transfer (10% impact on nitrogen removal) and performance was limited by AOB activity (75% impact on nitrogen removal), while operating above, AnAOB activity was limiting (68% impact on nitrogen removal).

View Article and Find Full Text PDF