Publications by authors named "Anna Karolina Palucka"

Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells.

View Article and Find Full Text PDF

Whereas preclinical investigations and clinical studies have established that CD8 T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8 T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8 T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8 T cell immunity, leading to the emergence of dysfunctional CD8 T cells.

View Article and Find Full Text PDF

During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer.

View Article and Find Full Text PDF

Blood monocytes from children with systemic lupus erythematosus (SLE) behave similar to dendritic cells (DCs), and SLE serum induces healthy monocytes to differentiate into DCs in a type I IFN-dependent manner. In this study, we found that these monocytes display significant transcriptional changes, including a prominent IFN signature, compared with healthy controls. Few of those changes, however, explain DC function.

View Article and Find Full Text PDF

Seasonal influenza vaccine protects 60 to 90% of healthy young adults from influenza infection. The immunological events that lead to the induction of protective antibody responses remain poorly understood in humans. We identified the type of CD4+ T cells associated with protective antibody responses after seasonal influenza vaccinations.

View Article and Find Full Text PDF

Dendritic cells (DCs) can initiate and shape host immune responses toward either immunity or tolerance by their effects on antigen-specific CD4(+) T cells. DC-asialoglycoprotein receptor (DC-ASGPR), a lectinlike receptor, is a known scavenger receptor. Here, we report that targeting antigens to human DCs via DC-ASGPR, but not lectin-like oxidized-LDL receptor, Dectin-1, or DC-specific ICAM-3-grabbing nonintegrin favors the generation of antigen-specific suppressive CD4(+) T cells that produce interleukin 10 (IL-10).

View Article and Find Full Text PDF

Dectin-1, a C-type lectin recognizing fungal and mycobacterial pathogens, can deliver intracellular signals that activate dendritic cells (DCs), resulting in initiation of immune responses and expansion of Th17 CD4(+) T cell responses. In this paper, we studied the roles of human Dectin-1 (hDectin-1) expressed on DCs in the induction and activation of Ag-specific CD8(+) T cell responses. We first generated an agonistic anti-hDectin-1 mAb, which recognizes the hDectin-1 Glu(143)-Ile(162) region.

View Article and Find Full Text PDF

Cancer immunotherapy seeks to mobilize a patient's immune system for therapeutic benefit. It can be passive, that is, transfer of immune effector cells (T cells) or proteins (antibodies), or active, that is, vaccination. Early clinical trials testing vaccination with ex vivo generated dendritic cells (DCs) pulsed with tumor antigens provide a proof-of-principle that therapeutic immunity can be elicited.

View Article and Find Full Text PDF

Host response to viral infection involves distinct effectors of innate and adaptive immunity, whose mobilization needs to be coordinated to ensure protection. Here we show that influenza virus triggers, in human blood dendritic-cell (DC) subsets (ie, plasmacytoid and myeloid DCs), a coordinated chemokine (CK) secretion program with 3 successive waves. The first one, occurring at early time points (2 to 4 hours), includes CKs potentially attracting effector cells such as neutrophils, cytotoxic T cells, and natural killer (NK) cells (CXCL16, CXCL1, CXCL2, and CXCL3).

View Article and Find Full Text PDF