Publications by authors named "Anna K Whitehead"

Article Synopsis
  • The study investigates the role of heparan sulfate 6-O-endosulfatases (Sulf1 and Sulf2) in bone marrow hematopoiesis by using a new mouse model with specific deletion of these enzymes in myeloid cells.
  • Male LysM-Sulf knockout mice showed an age-related increase in hematopoietic stem cells and granulocyte-monocyte lineages, but a decrease in lymphoid progenitors and B cells, while red blood cell and platelet production was impaired at later stages.
  • The findings highlight age- and sex-dependent differences in hematopoiesis and 6-O-sulfation levels, suggesting that Sulfs play a crucial role in regulating blood cell development in mice.
View Article and Find Full Text PDF

Smoking and high-fat diet (HFD) consumption are two modifiable risk factors for cardiovascular (CV) diseases, and individuals who are overweight or obese due to unhealthy diet are more likely to use tobacco products. In this study, we aim to investigate the combined effects of nicotine (the addictive component of all tobacco products) and HFD on CV health, which are poorly understood. C57BL/6N male mice were placed on either HFD (60 kcal% fat) or regular diet (22 kcal% fat) and exposed to air or nicotine vapor for 10-12 wk.

View Article and Find Full Text PDF

Background: The heart undergoes structural and functional changes in response to injury and hemodynamic stress known as cardiac remodeling. Cardiac remodeling often decompensates causing dysfunction and heart failure (HF). Cardiac remodeling and dysfunction are significantly associated with cigarette smoking.

View Article and Find Full Text PDF

Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system.

View Article and Find Full Text PDF

Introduction: The impact of nicotine, the addictive component of both traditional cigarettes and e-cigarettes, on many physiological processes remains poorly understood. To date, there have been few investigations into the impact of nicotine on the gut microbiome, and these studies utilized oral administration rather than inhalation. This study aimed to establish if inhaled nicotine alters the gut microbiome and the effect of sex as a biological variable.

View Article and Find Full Text PDF

Cigarette smoking is the single most important risk factor for the development of cardiovascular diseases (CVDs). However, the role of nicotine, the addictive component of all tobacco products, in the development of CVD is incompletely understood. Although increased public awareness of the harms of cigarette smoking has successfully led to a decline in its prevalence, the use of electronic cigarettes (e-cig) or electronic nicotine delivery system has increased dramatically in recent years because of the perception that these products are safe.

View Article and Find Full Text PDF

Coordinated investigations into the interactions between biologically mimicking (biomimetic) material constructs and stem cells advance the potential for the regeneration and possible direct replacement of diseased cells and tissues. Any clinically relevant therapies will require the development and optimization of methods that mass produce fully functional cells and tissues. Despite advances in the design and synthesis of biomaterial scaffolds, one of the biggest obstacles facing tissue engineering is understanding how specific extracellular cues produced by biomaterial scaffolds influence the proliferation and differentiation of various cell sources.

View Article and Find Full Text PDF

Advanced cellular biomanufacturing requires the large-scale production of biocompatible materials that can be utilized in the study of cell-matrix interactions and directed stem cell differentiation as well as the generation of physiologically relevant tissues for therapeutic applications. Herein we describe the development of a hydrogel based platform with tailorable mechanical properties that supports the attachment and proliferation of both pluripotent and multipotent stem cells. The biomimetic hydrogel scaffold generated provides biocompatible compositions for generating various tissue-like elasticities for regenerative medicine applications and advanced biomanufacturing.

View Article and Find Full Text PDF