Curr Protoc Protein Sci
November 2007
Solid-phase peptide synthesis has contributed immeasurably to the understanding of the chemistry and biology of peptides by enabling their ready preparation in small quantities up to the ton scale. The advantages of the technology, including its simplicity, ease of operation, and general efficiency have far outweighed its limitations. However, despite the general effectiveness of the solid phase synthesis methodology, some peptides are resistant to efficient assembly and are known as "difficult peptides.
View Article and Find Full Text PDFWe describe the formation of self-assembling nanoscale fibrillar aggregates from a hybrid system comprising a short polypeptide conjugated to the fluorophore fluorene. The fibrils are typically unbranched, approximately 7 nm in diameter, and many microns in length. A range of techniques are used to demonstrate that the spectroscopic nature of the fluorophore is significantly altered in the fibrillar environment.
View Article and Find Full Text PDFWe describe experiments designed to explore the possibility of using amyloid fibrils as new nanoscale biomaterials for promoting and exploiting cell adhesion, migration and differentiation in vitro. We created peptides that add the biological cell adhesion sequence (RGD) or a control sequence (RAD) to the C-terminus of an 11-residue peptide corresponding to residues 105-115 of the amyloidogenic protein transthyretin. These peptides readily self-assemble in aqueous solution to form amyloid fibrils, and X-ray fibre diffraction shows that they possess the same strand and sheet spacing in the characteristic cross-beta structure as do fibrils formed by the parent peptide.
View Article and Find Full Text PDFWe have investigated the effect of sample hydration on the wide-angle X-ray scattering patterns of amyloid fibrils from two different sources, hen egg white lysozyme (HEWL) and an 11-residue peptide taken from the sequence of transthyretin (TTR105-115). Both samples show an inter-strand reflection at 4.7 A and an inter-sheet reflection which occurs at 8.
View Article and Find Full Text PDFThe Abeta peptide has been identified as central to the onset and development of Alzheimer's disease (AD) and several hypotheses about toxicity involving Abeta peptides have been proposed including mechanisms of oxidative stress and disruption of calcium homeostasis. The biology, structure and physical properties of Abeta peptides are discussed, as well as existing therapeutics and future strategies for the treatment of AD.
View Article and Find Full Text PDFThe toxicity of the amyloid-beta peptide (Abeta) is thought to be responsible for the neurodegeneration associated with Alzheimer disease. Generation of hydrogen peroxide has been implicated as a key step in the toxic pathway. Abeta coordinates the redox active metal ion Cu2+ to catalytically generate H2O2.
View Article and Find Full Text PDFProtein Pept Lett
August 2004
The phenomenon of "difficult sequence" has long frustrated chemists in their efforts to assemble peptides that contain such sequences by solid phase synthesis methods. A variety of remedial measures are available to minimize or even abolish the negative impact of these sequences during synthesis. These include the use of elevated temperatures and stronger acylating reagents.
View Article and Find Full Text PDFThe amyloid beta peptide is toxic to neurons, and it is believed that this toxicity plays a central role in the progression of Alzheimer's disease. The mechanism of this toxicity is contentious. Here we report that an Abeta peptide with the sulfur atom of Met-35 oxidized to a sulfoxide (Met(O)Abeta) is toxic to neuronal cells, and this toxicity is attenuated by the metal chelator clioquinol and completely rescued by catalase implicating the same toxicity mechanism as reduced Abeta.
View Article and Find Full Text PDF