Publications by authors named "Anna K Kania"

Type 2 immune responses play a crucial role in host defense against parasitic infections but can also promote the development of allergies and asthma. This response is orchestrated primarily by group 2 innate lymphoid cells (ILC2) and helper type 2 (Th2) cells, both of which undergo substantial metabolic reprogramming as they transition from resting to activated states. Understanding these metabolic adaptations not only provides insights into the fundamental biology of ILC2 and Th2 cells but also opens up potential therapeutic avenues for the identification of novel metabolic targets that can extend the current treatment regimens for diseases in which type 2 immune responses play pivotal roles.

View Article and Find Full Text PDF

L. (Apiaceae) is a medicinal plant with a well-documented history in phytotherapy. The aim of the present work was to isolate isopimpinellin (5,8-methoxypsoralen; IsoP) from the fruit of this plant and evaluate its biological activity against selected tumor cell lines.

View Article and Find Full Text PDF

The transcription factor Interferon regulatory factor 8 (IRF8) is involved in maintaining B cell identity. However, how IRF8 regulates T cell independent B cell responses are not fully characterized. Here, an CRISPR/Cas9 system was optimized to generate -deficient murine B cells and used to determine the role of IRF8 in B cells responding to LPS stimulation.

View Article and Find Full Text PDF

CD8 cytotoxic T cells are a potent line of defense against invading pathogens. To aid in curtailing aberrant immune responses, the activation status of CD8 T cells is highly regulated. One mechanism in which CD8 T cell responses are dampened is via signaling through the immune-inhibitory receptor Programmed Cell Death Protein-1, encoded by Pdcd1.

View Article and Find Full Text PDF

B cell differentiation is associated with substantial transcriptional, metabolic, and epigenetic remodeling, including redistribution of histone 3 lysine 27 trimethylation (H3K27me3), which is associated with a repressive chromatin state and gene silencing. Although the role of the methyltransferase EZH2 (Enhancer of zeste homolog 2) in B cell fate decisions has been well established, it is not known whether H3K27me3 demethylation is equally important. In this study, we showed that simultaneous genetic deletion of the two H3K27 demethylases UTX and JMJD3 (double-knockout [ ] [dKO]) led to a significant increase in plasma cell (PC) formation after stimulation with the T cell-independent Ags LPS and NP-Ficoll.

View Article and Find Full Text PDF

B cell differentiation into Ab-secreting plasma cells requires transcriptional, metabolic, and epigenetic remodeling. Histone H3 lysine 27 trimethylation (H3K27me3), a histone modification associated with gene silencing, is dynamically regulated during B cell differentiation. Although several studies have focused on mechanisms involving the gain of this modification in plasmablasts (PB), the role of active demethylation of H3K27me3 by ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) and Jumonji domain-containing protein 3 (JMDJ3) during B cell differentiation has not been examined.

View Article and Find Full Text PDF

Cell division is an essential component of B cell differentiation to Ab-secreting plasma cells, with critical reprogramming occurring during the initial stages of B cell activation. However, a complete understanding of the factors that coordinate early reprogramming events in vivo remain to be determined. In this study, we examined the initial reprogramming by IRF4 in activated B cells using an adoptive transfer system and mice with a B cell-specific deletion of IRF4.

View Article and Find Full Text PDF

Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division.

View Article and Find Full Text PDF

Memory B cells (MBCs) have enhanced capabilities to differentiate to plasma cells and generate a rapid burst of Abs upon secondary stimulation. To determine if MBCs harbor an epigenetic landscape that contributes to increased differentiation potential, we derived the chromatin accessibility and transcriptomes of influenza-specific IgM and IgG MBCs compared with naive cells. MBCs possessed an accessible chromatin architecture surrounding plasma cell-specific genes, as well as altered expression of transcription factors and genes encoding cell cycle, chemotaxis, and signal transduction processes.

View Article and Find Full Text PDF

Epigenetic remodeling is required during B cell differentiation. However, little is known about the direct functions of epigenetic enzymes in Ab-secreting cells (ASC) in vivo. In this study, we examined ASC differentiation independent of T cell help and germinal center reactions using mice with inducible or B cell-specific deletions of Following stimulation with influenza virus or LPS, -deficient ASC poorly proliferated and inappropriately maintained expression of inflammatory pathways, B cell-lineage transcription factors, and Blimp-1-repressed genes, leading to fewer and less functional ASC.

View Article and Find Full Text PDF