The ruthenium complex sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (KP-1339/IT139) has entered clinical trials as the more soluble alternative to the indazolium compound KP1019. In order to get insight into its distribution and accumulation throughout a living organism, KP-1339/IT139 was administered intravenously in non-tumor bearing nude BALB/c mice and the Ru content in blood cells and plasma, bone, brain, colon, kidneys, liver, lung, muscle, spleen, stomach and thymus was determined at several time points. The Ru concentration in blood cells and plasma was found to increase slightly within the first hours of analysis, with the Ru concentration being 3-times higher in plasma compared to blood cells.
View Article and Find Full Text PDFIndazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (KP1019) and its Na(+) analogue (KP1339) are two of the most prominent non-platinum antitumor metal complexes currently undergoing clinical trials. After intravenous administration, they are known to bind to human serum albumin (HSA) in a noncovalent manner. To elucidate their HSA binding sites, displacement reactions with the established site markers warfarin and dansylglycine as well as bilirubin were monitored by spectrofluorimetry, ultrafiltration-UV-vis spectrophotometry, and/or capillary zone electrophoresis.
View Article and Find Full Text PDFIn recent years, capillary electrophoresis (CE) has matured to a standard method in medicinal inorganic chemistry. More and more steps of the drug discovery process are followed by CE. However, not only the number of applications has steadily increased but also the variety of used methodology has significantly broadened and, as compared to a few years ago, a wider scope of separation modes and hyphenated systems has been used.
View Article and Find Full Text PDFOxaliplatin is successfully used in systemic cancer therapy. However, resistance development and severe adverse effects are limiting factors for curative cancer treatment with oxaliplatin. The purpose of this study was to comparatively investigate in vitro and in vivo anticancer properties as well as the adverse effects of two methyl-substituted enantiomerically pure oxaliplatin analogs [[(1R,2R,4R)-4-methyl-1,2-cyclohexanediamine] oxalatoplatinum(II) (KP1537), and [(1R,2R,4S)-4-methyl-1,2-cyclohexanediamine]oxalatoplatinum(II) (KP1691)] and to evaluate the impact of stereoisomerism.
View Article and Find Full Text PDFRuthenium-indazole complexes are promising anticancer agents undergoing clinical trials. KP1339 is administered intravenously (i.v.
View Article and Find Full Text PDFWith the aim of exploring the anticancer properties of organometallic compounds with bioactive ligands, Ru(arene) compounds of the antibacterial quinolones nalidixic acid (2) and cinoxacin (3) were synthesized, and their physicochemical properties were compared to those of chlorido(η(6)-p-cymene)(ofloxacinato-κ(2)O,O)ruthenium(II) (1). All compounds undergo a rapid ligand exchange reaction from chlorido to aqua species. 2 and 3 are significantly more stable than 1 and undergo minor conversion to an unreactive [(cym)Ru(μ-OH)(3)Ru(cym)](+) species (cym = η(6)-p-cymene).
View Article and Find Full Text PDFWith the purpose to develop macromolecular magnetic resonance imaging contrast agents, we herein report three different synthetic approaches to the covalent attachment of bifunctional chelating agents to human serum albumin followed by coordination to contrast enhancing gadolinium(III). Applied methods cover active ester-mediated conjugation, linkage through glutaryl spacer, as well as the connection by the employment of glutaraldehyde. The content of gadolinium(III) was evaluated by inductively-coupled-plasma mass-spectrometry (ICP-MS) measurements and indicated reproducible amounts of conjugated contrast enhancing material.
View Article and Find Full Text PDFA series of bis(carboxylato)dichlorido(ethane-1,2-diamine)platinum(IV) compounds with IC(50) values ranging between 142 μM and 18 nM was investigated with respect to their lipophilicity (by the shake flask method as well as microemulsion electrokinetic chromatography), reduction potential, as well as their cellular accumulation in cancer cells in vitro. In general, the antiproliferative properties of the complexes correlated with their lipophilicity as well as their accumulation, whereas differences in antiproliferative potency could not be explained by reduction potentials since they do not vary significantly within the investigated series of compounds. Only minor effects for complexes featuring polar end groups were detected.
View Article and Find Full Text PDFMEEKC is a powerful electrodriven separation technique with many applications in different disciplines, including medicinal chemistry; however, up to now the coupling to highly sensitive and selective MS detectors was limited due to the ion suppressive effect of the commonly used surfactant SDS. Herein, the first example of the coupling of MEEKC to ICP-MS is presented and an MEEKC method for the separation of Pt(II) and Pt(IV) anticancer drugs and drug candidates was developed. Different compositions of microemulsions were evaluated and the data were compared with those collected with standard ultraviolet/visible (UV/vis) spectroscopy detection.
View Article and Find Full Text PDFApplication of modern analytical technology for studying the fate of metallodrugs after administration to the blood is of utmost importance for drug development. Zn(II) compounds are under development as insulin-enhancing drugs with potential use in the treatment of diabetes. In comparison to the well-established vanadium compounds, especially the lower risk of adverse effects due to the essentiality of the element in biological processes is advantageous.
View Article and Find Full Text PDF