Introduction: Diving utilising closed circuit pure oxygen rebreather systems has become popular in professional settings. One of the hazards the oxygen diver faces is central nervous system oxygen toxicity (CNS-OT), causing potentially fatal convulsions. At the same time, divers frequently travel by boat, often suffering seasickness.
View Article and Find Full Text PDFHuman passive motion during boat, car or airplane travel may trigger motion sickness. Seasickness is the most provoking manifestation of motion sickness. It imposes major constraints on quality of life and human performance.
View Article and Find Full Text PDFObjective: The therapeutic effects of antimotion sickness medications involve suppression of several components along the vestibular system. Scopolamine-based medications have proved to be the most effective anti-seasickness agents. However, there is high variability in individual responses.
View Article and Find Full Text PDFMotion sickness is the cause of major physical discomfort and impaired performance in many susceptible individuals. Some habituate to sea conditions, whereas others remain chronically susceptible, requiring lifelong pharmaceutical treatment. The present study sets out to investigate whether galvanic vestibular stimulation (GVS) coupled with rotatory chair stimulation could mimic sea conditions and alleviate motion sickness symptoms in individuals deemed chronically susceptible.
View Article and Find Full Text PDFSince the first case of COVID-19 in December 2019 in Wuhan, China, SARS-CoV-2 has spread worldwide and within a year and a half has caused 3.56 million deaths globally. With dramatically increasing infection numbers, and the arrival of new variants with increased infectivity, tracking the evolution of its genome is crucial for effectively controlling the pandemic and informing vaccine platform development.
View Article and Find Full Text PDF