Publications by authors named "Anna J Parker"

Article Synopsis
  • The study focuses on diradical benzyne isomers as models to test electronic structure methods for their ability to capture static and dynamic correlation.
  • Researchers employ advanced multireference methods, such as MC-SCF and MR-AQCC, to analyze the electronic structure and singlet-triplet splittings of these isomers.
  • Findings reveal that different types of coupling (through-space vs. through-bond) significantly influence the energy gaps and geometrical properties among the benzyne isomers, aligning well with experimental data.
View Article and Find Full Text PDF

Parahydrogen-induced polarization (PHIP) is a potent technique for generating target molecules with high nuclear spin polarization. The PHIP process involves a chemical reaction between parahydrogen and a target molecule, followed by the transformation of nuclear singlet spin order into magnetization of a designated target nucleus through magnetic field manipulations. Although the singlet-to-magnetization polarization transfer process works effectively at moderate concentrations, it is observed to become much less efficient at high molar polarization, defined as the product of polarization and concentration.

View Article and Find Full Text PDF

The HYPNOESYS method (Hyperpolarized NOE System), which relies on the dissolution of optically polarized crystals, has recently emerged as a promising approach to enhance the sensitivity of NMR spectroscopy in the solution state. However, HYPNOESYS is a single-shot method that is not generally compatible with multidimensional NMR. Here we show that 2D NMR spectra can be obtained from HYPNOESYS-polarized samples, using single-scan acquisition methods.

View Article and Find Full Text PDF

There is a fundamental issue with the use of dynamic nuclear polarization (DNP) to enhance nuclear spin polarization: the same polarizing agent (PA) needed for DNP is also responsible for shortening the lifetime of the hyperpolarization. As a result, long-term storage and transport of hyperpolarized samples is severely restricted and the apparatus for DNP is necessarily located near or integrated with the apparatus using the hyperpolarized spins. In this paper, we demonstrate that naphthalene single crystals can serve as a long-lived reservoir of proton polarization that can be exploited to enhance signals in benchtop and high-field NMR of target molecules in solution at a site 300 km away by a factor of several thousand.

View Article and Find Full Text PDF

Nanostructuring of a bulk material is used to change its mechanical, optical, and electronic properties and to enable many new applications. We present a scalable fabrication technique that enables the creation of densely packed diamond nanopillars for quantum technology applications. The process yields tunable feature sizes without the employment of lithographic techniques.

View Article and Find Full Text PDF

Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T).

View Article and Find Full Text PDF

In recent years, permanent magnet-based NMR spectrometers have resurfaced as low-cost portable alternatives to superconducting instruments. While the development of these devices as well as clever shimming methods have yielded impressive advancements, scaling the size of these magnets to miniature lengths remains a problem to be addressed. Here we present the results of a study of a discrete shimming scheme for NMR Mandhalas constructed from a set of individual magnet blocks.

View Article and Find Full Text PDF

Halogen bonding (R-X···Y) is a qualitative analogue of hydrogen bonding that may prove useful in the rational design of artificial proteins and nucleotides. We explore halogen-bonded DNA base pairs containing modified guanine, cytosine, adenine and thymine nucleosides. The structures and stabilities of the halogenated systems are compared to the normal hydrogen bonded base pairs.

View Article and Find Full Text PDF

9-Deaza-2'-deoxyguanosine (CdG) is a C-nucleoside and an analogue of the abundant promutagen 8-oxo-2'-deoxyguanosine (OdG). Like 2'-deoxyguanosine (dG), CdG should form a stable base pair with dC, but similar to OdG, CdG contains an N7-hydrogen that should allow it to also form a relatively stable base pair with dA. In order to further investigate the base pairing of CdG, it was incorporated into DNA and paired with either dC or dA.

View Article and Find Full Text PDF