The concentrations of the bioactive compounds in potato tubers are determined by both genetic potential and environmental factors. The purpose of the experiment was to determine the influence of organic and integrated production on the expression of the genetic potential with respect to the antioxidant properties of potato tubers and to evaluate its stability under different environmental conditions. This phenotyping was performed on seven new breeding lines (tetraploid clones) and three modern cultivars: Jelly, Satina and Tajfun.
View Article and Find Full Text PDFBackground: Tomato fruits are characterized by a good nutritional profile, including different bioactive compounds such as carotenoids, phenolic compounds and ascorbic acid. The objective of this study was to analyze the content of bioactive compounds in the fruit and the infection by Phytophthora infestans of 28 tomato genotypes from organic outdoor production. The relationship between bioactive compounds in the fruit and infection with P.
View Article and Find Full Text PDFCell wall polysaccharides, pectin composition, as well as apoplastic superoxide dismutase and peroxidase activities were investigated in strawberry (Fragaria x ananassa) cultivars (cvs) Korona and Elsanta differing in their ozone sensitivity. Plants were exposed to 140-170 microg m(-3) ozone either short-term for 7 days or long-term for 2 months in order to investigate whether differences in ozone sensitivity were due to differences in the apoplastic antioxidative systems. Cell wall polysaccharides were increased after 7 days and 2 months of ozone stress.
View Article and Find Full Text PDFJ Agric Food Chem
September 2007
Strawberry cultivars differ in their sensitivity to NaCl; fruits of cv. Elsanta suffer from softening, whereas those of cv. Korona retain their firmness.
View Article and Find Full Text PDFThe responses of fruit antioxidants in two strawberry cultivars differing in their sensitivity to NaCl stress were studied. The sensitive cv. Elsanta and the less sensitive cv.
View Article and Find Full Text PDFThe Positron-Emitting Tracer Imaging System (PETIS) is introduced for monitoring the distribution of (11)C-labelled photoassimilates in Sorghum. The obtained two-dimensional image data were quantitatively analysed using a transfer function analysis approach. While one half of a Sorghum root in a split root system was treated with either 0, 100, or 500 mM NaCl dissolved in the nutrient solution, tracer images of the root halves and the lower stem section were recorded using PETIS.
View Article and Find Full Text PDF