Quantitative diffusion MRI (dMRI) is a promising technique for evaluating the spinal cord in health and disease. However, low signal-to-noise ratio (SNR) can impede interpretation and quantification of these images. The purpose of this study is to evaluate several dMRI denoising approaches on their ability to improve the quality, reliability, and accuracy of quantitative diffusion MRI of the spinal cord.
View Article and Find Full Text PDFSpinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS.
View Article and Find Full Text PDFTuberous sclerosis complex is a rare genetic multisystem condition that is associated with a high prevalence of neurodevelopmental disorders such as autism and attention-deficit/hyperactivity disorder. The underlying neural mechanisms of the emergence of these symptom domains in tuberous sclerosis complex remain unclear. Here, we use fixel-based analysis of diffusion-weighted imaging, which allows for the differentiation between multiple fibre populations within a voxel, to compare white matter properties in 16 participants with tuberous sclerosis complex (aged 11-19) and 12 age and sex matched control participants.
View Article and Find Full Text PDFSeveral recent multi-compartment diffusion MRI investigations and modeling strategies have utilized the orientationally-averaged, or spherical mean, diffusion-weighted signal to study tissue microstructure of the central nervous system. Most experimental designs sample a large number of diffusion weighted directions in order to calculate the spherical mean signal, however, sampling a subset of these directions may increase scanning efficiency and enable either a decrease in scan time or the ability to sample more diffusion weightings. Here, we aim to determine the minimum number of gradient directions needed for a robust measurement of the spherical mean signal.
View Article and Find Full Text PDFChemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) can probe tissue biochemistry with high resolution and sensitivity without requiring exogenous contrast agents. Applying CEST MRI at ultrahigh field provides advantages of increasing spectral resolution and improving sensitivity to metabolites with faster proton exchange rates such as glutamate, a critical neurotransmitter in the brain. Prior magnetic resonance spectroscopy and CEST MRI studies have revealed altered regulation of glutamate in patients with multiple sclerosis (MS).
View Article and Find Full Text PDFBackground And Purpose: Myelin water fraction (MWF) is a histopathologically validated in vivo myelin marker. As MWF is the proportion of water with a short T relative to the total water, increases in water from edema and inflammation may confound MWF determination in multiple sclerosis (MS) lesions. Total water content (TWC) measurement enables calculation of absolute myelin water content (MWC) and can be used to distinguish edema/inflammation from demyelination.
View Article and Find Full Text PDF• In older healthy subjects, FA and MD show overall good test-retest reliability & reproducibility. • MD is sistematically more reproducible than FA across the entire brain anatomy. • FA is more reliable than MD in subcortical white matter regions.
View Article and Find Full Text PDFSpinal cord pathology is a feature of both neuromyelitis optica spectrum disorder (NMOSD) and relapsing-remitting multiple sclerosis (MS). While subclinical disease activity has been described in MS using quantitative magnetic resonance imaging measures, current evidence suggests that neurodegeneration is absent between relapses in NMOSD, although most evidence comes from brain studies. We aimed to assess cross-sectional differences and longitudinal changes in myelin integrity in relapse-free MS and NMOSD subjects over one year.
View Article and Find Full Text PDF