Degradation of the materials in dye-sensitized solar cells at elevated temperatures is critical for use in real applications. Both during fabrication of the solar cell and under real working conditions the solar cells will be exposed to heat. In this work, mesoporous TiO2 electrodes sensitized with the dyes D35 and K77 were subject to heat-treatment and the effects of this were thereafter investigated by photoelectron spectroscopy.
View Article and Find Full Text PDFThe effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations.
View Article and Find Full Text PDFDye-sensitized mesoporous TiO2 films have been widely applied in energy and environmental science related research fields. The interaction between accumulated electrons inside TiO2 and cations in the surrounding electrolyte at the TiO2/dye/electrolyte interface is, however, still poorly understood. This interaction is undoubtedly important for both device performance and fundamental understanding.
View Article and Find Full Text PDFA recently developed titanium dioxide (TiO2) based on-target method for phosphopeptide enrichment and matrix assisted laser desorption-ionization mass spectrometry (MALDI MS) analysis was used to investigate phosphorylations in the Adenovirus type 2 structural protein pIIIa. Lysates of purified virus particles were separated on 1-D SDS-PAGE and the band for the pIIIa protein was excised for tryptic digestion into peptides that were enriched with the on-target method. The enrichment provided by the method clearly improved the detectability of phosphorylated peptides and the results show for the first time evidence for multi-phosphorylated peptides in pIIIa.
View Article and Find Full Text PDFThe rapidly growing field of phosphoproteomics has led to a strong demand for procedures enabling fast and reliable isolation and enrichment of phosphorylated proteins and peptides. During the past decade, several novel phosphopeptide enrichment methods based on the affinity of phosphoryl groups for titanium dioxide (TiO(2)) have been developed and tested. The ultimate goal of obtaining comprehensive phosphoproteomes has, however, been found difficult to achieve and the obtained results often vary, dependent on the enrichment method and protocol used.
View Article and Find Full Text PDF