Publications by authors named "Anna Hupalowska"

With the convergence in exciting advances in molecular and spatial profiling methods and new computational approaches leveraging artificial intelligence and machine learning (AI/ML), the construction of cell atlases is progressing from data collection to atlas integration and beyond. Here, we explore five ways in which cell atlases, including the Human Cell Atlas, are already revealing valuable biological insights, and how they are poised to provide even greater benefits in the coming years. In particular, we discuss cell atlases as censuses of cells; as 3D maps of cells in the body, across modalities and scales; as maps connecting genotype causes to phenotype effects; as 4D maps of development; and, ultimately, as foundation models of biology unifying all these aspects and helping to transform medicine.

View Article and Find Full Text PDF

Comprehensively charting the biologically causal circuits that govern the phenotypic space of human cells has often been viewed as an insurmountable challenge. However, in the last decade, a suite of interleaved experimental and computational technologies has arisen that is making this fundamental goal increasingly tractable. Pooled CRISPR-based perturbation screens with high-content molecular and/or image-based readouts are now enabling researchers to probe, map, and decipher genetically causal circuits at increasing scale.

View Article and Find Full Text PDF

The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups.

View Article and Find Full Text PDF

Single-cell atlases promise to provide a 'missing link' between genes, diseases and therapies. By identifying the specific cell types, states, programs and contexts where disease-implicated genes act, we will understand the mechanisms of disease at the cellular and tissue levels and can use this understanding to develop powerful disease diagnostics; identify promising new drug targets; predict their efficacy, toxicity and resistance mechanisms; and empower new kinds of therapies, from cancer therapies to regenerative medicine. Here, we lay out a vision for the potential of cell atlases to impact the future of medicine, and describe how advances over the past decade have begun to realize this potential in common complex diseases, infectious diseases (including COVID-19), rare diseases and cancer.

View Article and Find Full Text PDF

The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the pediatric population. Recent research indicates the crucial role of interactions between the altered intestinal microbiome and the immune system in the pathogenesis of several chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD). Here, we review recent knowledge concerning the pathogenic mechanisms underlying these disorders, and summarize the facts suggesting that the initiation and progression of IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of composition and abundance of the gut microbiota.

View Article and Find Full Text PDF

Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types.

View Article and Find Full Text PDF

Understanding the genetic and molecular drivers of phenotypic heterogeneity across individuals is central to biology. As new technologies enable fine-grained and spatially resolved molecular profiling, we need new computational approaches to integrate data from the same organ across different individuals into a consistent reference and to construct maps of molecular and cellular organization at histological and anatomical scales. Here, we review previous efforts and discuss challenges involved in establishing such a common coordinate framework, the underlying map of tissues and organs.

View Article and Find Full Text PDF

Nuclear architecture has never been carefully examined during early mammalian development at the stages leading to establishment of the embryonic and extra-embryonic lineages. Heterogeneous activity of the methyltransferase CARM1 during these stages results in differential methylation of histone H3R26 to modulate establishment of these two lineages. Here we show that CARM1 accumulates in nuclear granules at the 2- to 4-cell stage transition in the mouse embryo, with the majority corresponding to paraspeckles.

View Article and Find Full Text PDF

Remodelling of the human embryo at implantation is indispensable for successful pregnancy. Yet it has remained mysterious because of the experimental hurdles that beset the study of this developmental phase. Here, we establish an in vitro system to culture human embryos through implantation stages in the absence of maternal tissues and reveal the key events of early human morphogenesis.

View Article and Find Full Text PDF

The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles.

View Article and Find Full Text PDF

Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes.

View Article and Find Full Text PDF

Ritscher-Schinzel syndrome (RSS)/3C (cranio-cerebro-cardiac) syndrome (OMIM#220210) is a rare and clinically heterogeneous developmental disorder characterized by intellectual disability, cerebellar brain malformations, congenital heart defects, and craniofacial abnormalities. A recent study of a Canadian cohort identified homozygous sequence variants in the KIAA0196 gene, which encodes the WASH complex subunit strumpellin, as a cause for a form of RSS/3C syndrome. We have searched for genetic causes of a phenotype similar to RSS/3C syndrome in an Austrian family with two affected sons.

View Article and Find Full Text PDF

APPL1 is a multifunctional adaptor protein that binds membrane receptors, signaling proteins and nuclear factors, thereby acting in endosomal trafficking and in different signaling pathways. Here, we uncover a novel role of APPL1 as a positive regulator of transcriptional activity of NF-κB under basal but not TNFα-stimulated conditions. APPL1 was found to directly interact with TRAF2, an adaptor protein known to activate canonical NF-κB signaling.

View Article and Find Full Text PDF

It is becoming clear that intracellular signaling events are intimately linked with the membrane transport processes. In addition to the long known role of endocytosis in downregulating plasma membrane receptors, more recent data uncover several sophisticated modes by which endocytosis affects the type and duration of signals. Particularly striking are various roles of endocytic compartments as membrane platforms for compartmentalized assembly or sequestration of specific signaling complexes.

View Article and Find Full Text PDF

During meiotic maturation, the majority of oocytes from LT/Sv mice arrest at metaphase I. However, anaphase may be induced through parthenogenetic activation. If this happens within the ovary, it often results in the development of ovarian teratomas.

View Article and Find Full Text PDF

Here, we outline the mechanisms involved in the regulation of cell divisions during oocyte maturation and early cleavages of the mouse embryo. Our interest is focused on the regulation of meiotic M-phases and the first embryonic mitoses that are differently tuned and are characterized by specifically modified mechanisms, some of which have been recently identified. The transitions between the M-phases during this period of development, as well as associated changes in their regulation, are of key importance for both the meiotic maturation of oocytes and the further development of the mammalian embryo.

View Article and Find Full Text PDF

The first mitosis of the mouse embryo is almost twice as long as the second. The mechanism of the prolongation of the first mitosis remains unknown, and it is not clear whether prometaphase or metaphase or both are prolonged. Prometaphase is characterized by dynamic chromosome movements and spindle assembly checkpoint activity, which prevents anaphase until establishment of stable kinetochore-microtubule connections.

View Article and Find Full Text PDF